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Abstract: Sequential recommendation aims to predict users' future preferences by analyzing their historical behavior
sequences. In recent years, deep learning techniques have been widely applied to sequential recommendation tasks, achieving
remarkable improvements in recommendation accuracy. However, existing methods often suffer from structural imbalance in
modeling the rapidly changing short-term interests and the relatively stable long-term preferences of users. Moreover, these
methods face limitations such as high computational costs and low inference efficiency when dealing with long behavior
sequences. To address these challenges, this paper proposes a novel sequential recommendation model named CNN-Mamba,
which integrates Convolutional Neural Networks (CNN) with State Space Models (SSM). Specifically, the CNN component
leverages local receptive fields to efficiently extract short-term interest features from recent user interactions, thereby enhancing
the model’s ability to capture local behavior patterns. Meanwhile, the SSM component is introduced as a long-term interest
modeling module to capture global dependencies within long sequences. Furthermore, an adaptive fusion layer is designed to
dynamically integrate the short- and long-term modeling outputs, thereby improving the model's generalization ability. In
addition, the implicit recurrence mechanism in the state space model effectively reduces computational complexity and enhances
the efficiency of long-sequence modeling. Experimental results on three real-world datasets demonstrate that the proposed CNN-
Mamba model outperforms state-of-the-art baselines in both recommendation accuracy and inference efficiency, validating its
effectiveness and practicality.

Keywords: State Space Model; Convolutional Neural Network; Sequential Recommendation; Long- and Short-Term Interest
Modeling.

has limitations: Markov chain-based approaches rely heavily

1. Introduction on the most recent interactions and struggle to capture global

In today’s era of information overload, recommendation information. In addition, static models such as matrix
systems have become a key technology for delivering factorization ignore the temporal evolution of user interests;
personalized content [1]. As an important branch of when user preferences change rapidly, these rpodels cannot
recommendation  systems, sequential recommendation update accordingly, leading to recommendations that lack
predicts items that users may be interested in by analyzing timeliness and fail to adapt to dynamic user interests.
their historical behavior sequences, thereby enhancing user The rise of deep learplng has an?Cted new vitality into
experience and recommendation performance. Unlike sequential recommendatllon. I.n particular, recurrent neural
traditional static recommendation methods, sequential networks.(RNNs) and their variants have been vyldely adopted
recommendation focuses on the dynamic evolution of user for h?ndllng long sequences. Hld351 et al. [4] introduced the
interests over time and captures temporal dependency classical GRU4Rec model, whlch was the first to apply gaFed
patterns within user behaviors to improve the accuracy of recurrent units (GRUs) to session-based recommendation
personalized recommendations [2]. However, due to the tasks, demonstrating the powerful capability of RNNs in
complexity of user interests and the highly dynamic nature of modeling user click sequences. RNN-based approaches can
behavioral sequences, efficiently modeling short-term interest encode. entire his.torical sequences into. hidden states,
fluctuations and long-term interest stability remains a theoretically capturing dependencies of arbitrary length and
significant challenge in sequential recommendation. Section extracting richer long-term semantic information compared to
Headings Markov chains. In data-rich scenarios, RNN-based sequence

At present, sequential recommendation has evolved from models often significantly outperform simple Markqv chain
traditional statistical methods to deep learning-based models. However, RNN'b?Sed models.also have inherent
approaches. Early methods primarily relied on Markov chains drawbacks. First, the recursive computation pattern of RNNs
and matrix factorization. These methods were able to mine makes parallelization difficult, as the computation of
latent features from user—item interaction matrices but did not subsequent states depends on the results of previous steps.
explicitly account for the order of interactions, thus failing to Second, RNN models contain a large number of parameters
capture the temporal changes in user preferences. Another and complex training processes; under data-sparse conditions,
class of traditional approaches employed Markov chains to they are prone to overfitting and gradient vanishing problems,
model sequential dependencies. Rendle et al. [3] proposed the requiring large amounts of training data to fully learn
FPMC model, which combines matrix factorization with a sequential  patterns. Consequently,. althoug}-l. .recurregt
first-order Markov chain to jointly model users’ long-term networks  enhance sequence rnpddlr}g c.apablhtl.es, thplr
and short-term preferences. Compared with traditional performance and ?fﬁmenc}’ remam.hmlted n tasks 1pvolv1ng
collaborative filtering methods, FPMC achieved superior long sequences, high sparsity, or strict real-tlme requirements.
performance in sequential prediction tasks. However, it still Convolutional neural networks (CNNs), with their parallel
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computing capabilities and local receptive fields, have
emerged as a promising direction for sequential
recommendation. Unlike RNNs that process sequences step
by step, CNNs can apply convolution operations to fixed-
length recent interaction segments to capture local patterns,
thereby effectively modeling users’ short-term dynamic
interests. Tang et al. [5] proposed the Caser model, a
representative of this approach. Caser stacks embeddings of
the user’s most recent L interactions into a two-dimensional
“time—latent space” matrix, treating it as an image, and
applies convolutional filters over this image to extract local
sequential patterns. Through horizontal and vertical
convolutions, Caser can simultaneously characterize users’
general preferences and short-term sequential preferences
within a unified network. Experiments have shown that Caser
consistently outperformed other sequential recommendation
algorithms on multiple public datasets. However, models
purely based on convolutional neural networks also face
certain limitations. Since the length L of the convolutional
window is usually fixed, the range of historical interactions
directly utilized by the model is limited; when user interest
evolution involves long-term dependencies far beyond the
window length, the model may fail to adequately capture
carlier preference changes. Therefore, how to leverage the
efficiency of CNNs in capturing short-term patterns while
enhancing the modeling of long-term interests remains a key
problem to be addressed in CNN-based sequential models.

Recently, the success of Transformers and other self-
attention mechanisms in sequence modeling has drawn
significant attention in the recommendation field. Kang et al.
[6] pioneered the introduction of the Transformer encoder into
sequential recommendation with the SASRec model, which
leverages self-attention mechanisms to model user behavior
sequences. SASRec captures long-range dependencies
similar to RNNs while simultaneously emphasizing recent
important behaviors like Markov chains, making the model
highly adaptable to datasets with varying levels of sparsity.
Experimental results on multiple benchmark datasets
demonstrate that SASRec significantly outperforms previous
sequential recommendation algorithms.

Building on SASRec, Sun et al. [7] proposed BERT4Rec,
which incorporates a bidirectional Transformer encoder to
fully utilize bidirectional contextual information. Unlike
traditional unidirectional models that rely solely on historical
information to predict the next item, BERT4Rec randomly
masks portions of sequences during training, allowing the
model to infer masked items by jointly leveraging both left
and right contexts of the target item. This pretraining
paradigm avoids the issue of target information leakage in
bidirectional modeling and substantially enhances the
precision of sequence representations. Experimental results
show that BERT4Rec achieved superior recommendation
performance on multiple public datasets compared to
previous unidirectional sequential models. However, these
models typically have a large number of parameters and high
computational costs, making them less suitable for scenarios
that demand high real-time performance or are constrained by
limited computational resources. Thus, improving the
efficiency of these models and achieving a more robust
integration of short-term and long-term interest modeling
remain significant challenges.

Unlike Transformer-based architectures with attention
mechanisms, state space models (SSMs) have recently

emerged as a promising paradigm in sequence modeling tasks.
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Gu et al. introduced the Mamba model [8], which employs a
selective state space mechanism to eliminate the sequential
processing bottleneck inherent in traditional recurrent
structures, achieving linear time complexity while effectively
capturing  long-range  dependencies. @~ Mamba  has
demonstrated performance comparable to or even surpassing
that of Transformers across multiple long-sequence tasks,
such as natural language processing, while delivering better
inference efficiency and substantial resource savings.
Subsequently, Dao et al. proposed Mamba2 [9], improving
the state transition structure and feature representation,
thereby enhancing the stability and generalization ability of
the model in complex sequential tasks.

Given the strong memory retention and global modeling
capabilities of state space models in long-term interest
modeling, this paper draws inspiration from the structural
design of the Mamba family of models, using it as the long-
term interest modeling module. Combined with the local
feature extraction strength of CNNs in capturing short-term
interests, we design a hybrid personalized recommendation
model, CNN-Mamba, to enhance the representational power
and performance of sequential recommendation in dynamic
environments. Despite the significant breakthroughs achieved
by the Mamba family in long-sequence modeling, they still
face limitations. Since SSMs mainly rely on linear dynamic
systems to model sequential information, they exhibit limited
capability in capturing complex local nonlinear interest
variations. This issue becomes particularly pronounced in
recommendation scenarios where users' short-term interests
fluctuate rapidly, making it challenging to precisely capture
fine-grained behavioral patterns.

To address these challenges, this paper proposes a novel
sequential recommendation model named CNN-Mamba. This
model exploits the strength of convolutional neural networks
in extracting local patterns to model short-term interest
dynamics from recent user behaviors. Meanwhile, it leverages
the state space model’s capability in global dependency
modeling to capture the evolving trends of users' long-term
preferences. By integrating the local feature extraction ability
of CNNs with the global sequence modeling power of SSMs,
CNN-Mamba simultaneously models both short-term and
long-term user interests, thereby improving the accuracy and
diversity of sequential recommendations.

The key contributions of this paper can be summarized as
follows:

1). We propose a hybrid sequential recommendation model
that integrates CNN and the Mamba state space model. The
architecture includes an embedding layer, the CNN-Mamba
module, an adaptive fusion layer, and a prediction layer. This
design enables the dynamic fusion of long-term and short-
term interests, fully leveraging CNN’s efficiency in short-
term interest modeling while capitalizing on Mamba’s
capacity for global dependency modeling in long-term
interest modeling.

2). We design a CNN-Mamba fusion strategy that achieves
collaborative optimization of short-term and long-term
interests, overcoming the information segmentation issue
present in traditional models. This allows short-term interests
to effectively influence long-term modeling while enabling
long-term interests to stabilize the representation of short-
term interests, thereby enhancing recommendation quality.

3). The model optimizes computational efficiency and
improves recommendation effectiveness. Compared with
Transformer-based architectures, CNN-Mamba reduces



computational complexity, making the model more scalable
for long-sequence modeling tasks.

4). Extensive experiments conducted on three real-world
datasets demonstrate that CNN-Mamba outperforms baseline
models across multiple evaluation metrics.

2. Related Work

2.1. Sequential Recommendation

Sequential recommendation is a method that predicts users’
future preferences by leveraging their behavioral sequences.
Unlike traditional collaborative filtering methods, which are
based solely on static user—item interaction data, sequential
recommendation emphasizes temporal patterns, dynamically
modeling user behavior to identify the evolution of user
interests and generate more personalized recommendations.
Early sequential recommendation methods were primarily
based on Markov chains and collaborative filtering. Markov
chains [10] build transition matrices to capture users’ short-
term behaviors and are well suited for modeling transitions
between adjacent behaviors. However, because they rely only
on the most recent interactions, they struggle to capture long-
range dependencies within sequences. Collaborative filtering
algorithms [11], which recommend items by identifying
similar users or items, also perform poorly when handling the
temporal dependencies and dynamic variations inherent in
sequential data. With the growth of data volume, sequential
recommendation models have increasingly evolved toward
deep learning methods. Deep learning models offer strong
capabilities for capturing complex patterns, allowing for more
flexible modeling of both short-term and long-term user
preferences. Against this backdrop, convolutional neural
networks (CNN5s) have emerged as an important direction for
sequential recommendation research due to their advantages
in short-term interest modeling.

2.2. CNN-based Sequential Recommendation
Algorithms

Convolutional neural networks, known for their efficient
local feature extraction capabilities [12], are widely used in
sequential recommendation, particularly for short-term
interest modeling. By leveraging local receptive fields, CNNs
can efficiently extract localized patterns from user behavior
sequences and progressively build more complex feature
representations through stacked convolutional layers.
Compared with traditional recurrent neural networks (RNNs),
CNNs can process sequence data in parallel, avoiding the
computational bottlenecks that occur when handling long
sequences in traditional networks.

The Caser model is a classic CNN-based sequential
recommendation model. Caser uses horizontal and vertical
convolutions to capture user behavioral patterns along the
temporal axis and interaction features between users and
items, thereby enabling precise modeling of short-term
interests [ 13]. Additionally, the S3Rec model [14] builds upon
Caser by introducing multi-scale convolutional kernels,
which further enhance the ability to extract multi-level
features. This enables CNNs to simultaneously capture short-
term fluctuations and long-term trends within user sequences.
The multi-scale design allows S3Rec to excel in modeling
complex user behaviors, as it considers changes in user
interests across multiple scales, improving both accuracy and
robustness.

However, despite their advantages in short-term interest
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modeling, CNN-based methods also have significant
limitations. First, the local receptive fields of CNNs restrict
their ability to model long sequences and capture global
dependencies effectively. In addition, CNNs model temporal
dependencies in an indirect manner; while stacking more
convolutional layers can expand the receptive field, such
methods are still limited in capturing complex temporal
dependencies and cannot fully reflect the evolving nature of
user interests.

2.3. Attention-based Sequential
Recommendation

Attention mechanisms dynamically assign weights to each
time step of user behaviors, enabling more flexible modeling
of evolving user interests. By adaptively distributing attention
weights, attention mechanisms capture global dependencies
across time steps, providing stronger -capabilities for
modeling long sequences [15].

Kang et al. [6] introduced the SASRec model, which adopts
a self-attention-based architecture. Unlike traditional
recurrent neural networks, SASRec calculates relationships
between each position in the sequence and all others,
effectively capturing dynamic changes in short-term
dependencies. Through stacked self-attention layers, SASRec
incrementally extracts user interest features and produces
accurate recommendations. This model also effectively
avoids gradient vanishing and information loss issues that are
common in RNNs. Sun et al. [7] further proposed the
BERT4Rec model, which employs a bidirectional self-
attention architecture. This structure enables the model to
consider both forward and backward dependencies in user
behavior sequences, thereby capturing complex dependencies
comprehensively. BERT4Rec not only improves long-
sequence modeling capabilities but also adopts a pretraining-
and-finetuning framework. This allows the model to be
pretrained on large-scale unlabeled datasets and then fine-
tuned on specific recommendation tasks, significantly
enhancing generalization performance. However, despite
their strong ability in long-sequence modeling, attention-
based models still face limitations in local feature extraction
and computational complexity [16]. First, the computational
complexity of attention mechanisms is high, especially when
processing very long sequences, where the complexity of self-
attention reaches O(n?). This can create computational
bottlenecks and hinder performance on large-scale datasets.

To further improve efficiency and representational capacity

in long-sequence modeling, Gu et al. [8] proposed a state
space modeling framework. Among these, the Mamba model
has gained significant attention for its linear-time complexity
and global modeling capability. By constructing selective
state space representations, the Mamba model maintains the
advantages of parallel computation while -effectively
capturing long-range dependencies, thus overcoming the high
complexity and low efficiency issues of attention mechanisms
in long-sequence modeling. However, the Mamba model still
shows limitations in capturing users’ recent preferences.
To address these existing challenges, this study proposes a
hybrid model that integrates convolutional neural networks
and self-attention mechanisms, while further improving the
architecture by introducing state space models. In this design,
CNNs are employed to model users’ recent preferences, while
the state space model is leveraged to capture long-term
preferences, enabling more comprehensive sequential
recommendation.



3. CNN-Mamba

The framework of the proposed model is illustrated in
Figure 1, where the input sequence represents the user’s
historical interaction records, denoted as xi, Xz, ..., X;, with
each element x; indicating the user’s interaction behavior at
time step i. The model mainly consists of the following
components: an embedding layer, a short-term interest
modeling module, a long-term interest modeling module, and
an adaptive fusion layer. In the embedding layer, user
behavior sequences are mapped into dense vector .

In this study, U represents the set of all users, where |U|
denotes the number of users, and |V| denotes the number of
items. The interaction sequence of a user u is denoted as S, =
{v1, V2, ..., v}, arranged in chronological order, where each
vi € V indicates an item the user u interacted with at time
step i. The objective of sequential recommendation is to
predict the next item with which user u will interact at time
step ntl. Sequential recommendation achieves this by
learning the conditional probability.P(v | S.':»; 0),where 6
represents the model parameters, and v € V is any candidate
item in the item set. This conditional probability distribution
characterizes the likelihood that the user will interact with
each candidate item given their historical interaction
behaviors. By maximizing this conditional probability
distribution, the model produces optimal recommendation

results, generating the most probable next-item
recommendation for the user.
S
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Figure 1. CNN-Mamba
3.1. Embedding Layer
eR”

item

The item embedding laye

()
interacted item " € Vinto a ddd-dimensional dense vecto

e” eR

r maps each

r. In this way, the item embedding layer
effectively reduces the sparsity of the input data and enhances
the expressiveness of the features. The positional

P €R embedding layer provides temporal position

information for the user’s behavior sequence. By generating
learnable embeddings with the same dimensionality as the
item embeddings, the positional embedding layer enables the
model to capture temporal patterns within the sequence.
Finally, by summing the item embeddings and positional
embeddings, the embedding layer transforms the user’s

k=3
Convmid (g

L., = SEAtt(Conv' > (&

mid

® denotes the element-wise multiplication operation, and
represents the attention mechanism that generates dynamic
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3.2. CNN-Mamba

3.2.1. Short-Term Interest Module

The short-term interest module aims to capture user
behavior sequences through convolution operations and
dynamically adjust the importance of features by

incorporating the attention mechanism. The input features of
-1
@), The input features of the first

={h,hy,.. . h}

historical behavior sequence into a

the module are as follows:
0
@ are the feature representations generated by the

0 _ 1:n
embedding layer: Hay =€ @ denotes the

historical behavior sequence of user u, and € represents the
embedding operation, which includes the combination of item
embedding and positional embedding. The features generated
by the embedding layer serve as the input of the first layer,
while the input features of the subsequent layers are provided
by the output of the previous layer.“In the short-term interest
I-1

) subjected to a linear transformation and

layer

, where

module, is first

the feature distribution is stabilized through layer
normalization, with the formula as follows:
3 ) = LN(Dpt(Linear,, (H,,,))) (1

Linear denotes a fully connected linear transformation, Dpt
denotes the Dropout operation, and LN refers to the layer
normalization operation, which is used to improve the
training stability of the model.

The normalized features ) are extracted
through multiple one-dimensional convolution operations
(Conv1D) with kernel size k = 3 to obtain local features. For
time step j, the output of the m-th convolution kernel is given
by the following formula:

cr=o(&

)[j:j+k71] ° Fm) (2)

E .
)[f k=11 denotes the features within the sliding

window from position j to j+k-1; F" denotes the m-th

convolution kernel; D s the activation function.

At each position j, the outputs of the convolution kernels
are integrated through concatenation to generate the local
feature representation, as shown in the following formula:

Conv'= (€ ), =Concat(C,,...,C")eR (3)

mid

Here, Concat indicates concatenating the results of multiple
convolution kernels along the feature dimension. Finally, the
convolution results are concatenated across the entire
sequence into a holistic representation and further optimized
through dropout and layer normalization, as shown in the
following formula:

To further emphasize key features, the convolution results
are dynamically weighted through a squeeze-attention

mechanism, and the final short-term interest feature
representation is obtained as follows:

& & 4)

E 5

weights using the global context.



3.2.2. Long-Term Interest Module

Since long-term interest modeling in recommendation
systems requires handling the global dependencies of users’
historical behavior sequences, the traditional self-attention
mechanism captures the correlations among features through
three matrices: Query (Q), Key (K), and Value (V). However,
the Softmax operation in self-attention has high
computational complexity, making it difficult to meet the
modeling requirements for long sequence data. In contrast,
the structured state space model achieves efficient modeling
through linearized computation.

By combining the linear state space modeling of SSD, the
input features establish causal dependencies between time
steps via a mask matrix, generating global feature
representations, as shown in the following formula:

SSD(E LE ©)

Here, is the mask matrix, which is used to simulate the state
transition relationships, ensuring that the current time step
depends only on the previous time steps and preventing the

leakage of future information. The matrix L is defined as
follows:

VT, ifis
a, ifi>],
L o ™)
[O, otherwise.
1
Next, the input features ) are further mapped
— Y74 _ 1 K
into  the 0=¢ W , K=¢ W , and
V=& :)WV

. Based on the SSD attention mechanism,
linearized computation is used to replace the traditional
Softmax operation, as expressed in the following formula:

Att(O, K, V)=L Sy ®)
0-K o .

is used for the dot-product operation between the
Query and Key to measure the similarity between time steps;
V is the Value matrix, through which the final global feature
representation is obtained by weighted computation. Finally,
by incorporating the dynamic weighting mechanism SEALtt,
the generated global feature representation is further
dynamically adjusted, as shown in the following formula:

G, =SEAt(SSD(E £

long
9)
Here, SEAtt refers to the squeeze-and-excitation attention
mechanism, which enhances the adaptability of feature
representations through channel-wise weighted adjustment.

3.3. Adaptive Fusion Layer

The adaptive fusion layer achieves personalized modeling
of user behavior sequences by dynamically integrating short-
term and long-term interest features. First, the output features

I-1
of the historical behavior ~ ) sequence are subjected to
global average pooling to obtain the global representation, as

)

shown in the following formula P :
1 n I
P )= > Out(H,,)
=1

Subsequently, the global representation is passed through a
linear transformation and a sigmoid activation function to

(10)
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Ada(u)

, as shown in the

)))(11)

Qs the activation function, which is used to map the
weights into the range [0, 1]. Finally, the adaptive weights

Ada(u)

compute the adaptive fusion weight
following formula:

Ada(u)(H|,)) = ©(Linear,,,

(P

are applied to the short-term interest features

L . .

Conv and long-term interest features "¢ for weighted
fusion, producing the final feature representation, as shown in
the following formula:

My = Adau)(Hiy))- Mz, + (1= AdaGu)(Hy,)))- G (12)
1—-Ada(u)(H'!

@)X(Hy) is the complementary value,

representing the weight of the long-term interest features.

Ada(u)

When approaches 0, the weight of long-term

interest features is higher; when Ada(u) approaches 1, the
weight of short-term interest features is higher.

3.4. Prediction Layer

After aggregating the information from all positions across

the L layers, we obtain the final output of all items in the input

L
sequence ). Then, the feature at the n-th time step is taken

H(Lu)[n]

a linear

and mapped into a high-dimensional space through
transformation and an activation function.

Subsequently, the mapped feature is dot-multiplied  table

0
with the shared item embedding table b and added with a
bias term to obtain the scores of all candidate items, as shown
in the following formula:

P i=o(8(HL I £ EL, +5°) (13)

O denotes the softmax function, which normalizes the
item scores into a probability distribution, ultimately
outputting the probability of the item that the user is most
likely to choose in the next step.

4. Experiments and Results Analysis

To validate the effectiveness of the proposed model,
relevant experiments were conducted. In this section, we first
introduce the datasets used in the experiments and the data
preprocessing methods; then, we describe the baseline models
for comparison, the evaluation metrics, and the related
experimental parameters.

4.1. Datasets

In this paper, the performance of the CNN-Mamba model
is evaluated on three publicly available real-world
recommendation system datasets: Amazon Toys, Sports, and
Beauty. These datasets are derived from large-scale product
review data on the Amazon platform and are widely used in
recommendation system research. The datasets are divided
according to the top-level categories of products, specifically
‘Toys and Games,” ‘Sports and Outdoors,” and ‘Beauty,’
covering user purchase behavior records in different domains.
The data preprocessing method in this paper is consistent with
previous studies. Specifically, each rating or review is
regarded as evidence of a user—item interaction, and each



dataset is converted into an implicit dataset. Then,
interactions are grouped by user ID and sorted according to
timestamps to form a sequence for each user.

Table 1. Dataset Statistics

Dataset | Inter | Users | Items | Len, | Len, | Sparsity
Toys 167597 | 19411 11926 8.5 14.2 99.94%
Sports | 296338 | 35599 | 18456 8.2 16.2 99.91%
Beauty 198500 | 22360 | 12002 8.8 16.5 99.93%

4.2. Baseline

To demonstrate the effectiveness of the proposed model,
the CNN-Mamba model was compared with the following
baseline models:

GRU4Rec: A recommendation system based on recurrent
neural networks that captures the dynamics of user session
behaviors through gated recurrent units (GRU). It is a session-
based recommendation model capable of handling the
temporal dependencies in user behavior sequences.

Caser: A model that employs horizontal and vertical
convolutional layers of convolutional neural networks (CNN)
to capture dynamic features in user behavior sequences and
extends user interests into multi-layer perceptrons to generate
the final recommendation results.

NextltNet: A generative network constructed by stacking
convolutional layers to capture deep patterns in user
sequential behaviors. It can efficiently perform next-item
recommendation and exhibits good scalability.

SASRec: A model that adopts the Transformer architecture,
leveraging the self-attention mechanism to model long-range
dependencies in user behavior sequences, making it suitable
for long-term interest modeling.

BERT4Rec: A model based on the Transformer that
introduces a bidirectional modeling mechanism to simulate
the contextual information of user behaviors, thereby
enhancing the global modeling capability of user behavior
sequences.

GCSAN [17]: A model that combines graph contextual
information with the self-attention mechanism, enhancing the
modeling of graph-structured data by capturing the
relationships between users and items in session-based
recommendation.

SINE [18]: A sparse interest network designed to address
the sparsity of user interest distributions, which optimizes
sequential recommendation performance through an adaptive

mechanism.

4.3. Evaluation Metrics

This paper adopts two popular performance evaluation
metrics in recommendation systems to measure the
effectiveness of recommendation algorithms: Recall@K and
NDCG@K (Normalized Discounted Cumulative Gain).

Recall@K: This metric is used to evaluate the accuracy of
recommendation algorithms. It is defined as the ratio of the
number of positive samples T(u) in the recommendation list
to the total number of samples (N).

Recall @K = L&)

NDCG@K (Normalized Discounted Cumulative Gain):
This metric not only measures the accuracy of the
recommendation system but also evaluates the rationality of
the ranking in the recommendation results, emphasizing the
contribution of correctly recommended items at higher ranks.

N

NDCG @K = i ;
N “='log, (rank +1)

In this paper, the values of K are set to 1, 5, and 10 for
comparison with the baseline methods. The higher the values
of these evaluation metrics, the better the prediction results.

4.4. Experimental Details

The open-source framework RecBole was used to evaluate
the baseline models, and grid search was adopted to optimize
the hyperparameters of each model. For each baseline
algorithm, the following parameter settings were applied:
hidden layer dimension h = {16, 32, 64, 128}, convolution
kernel size k = {3, 5, 7, 9, 11}, activation functions selected

®={ReLU,GELU Sigmoid; , dropout rate for the attention
d, elle”,1e™]

from

mechanism set to , and learning rate range set

8 1 -1
to7€lle1e"] ATl models used the Adam optimizer with
hyperparameters $, =099 , and L2

( A4=0.001 ). The learning rate was initialized at 77=0.001 and
decayed during training. The training epochs were set to 20.
In terms of data processing, all datasets were uniformly set
with a maximum sequence length of N = 50, and padding was
used for sequence completion. To ensure consistency of the
experiments, all models adopted the same training settings.

regularization

4.5. Overall Performance Comparison

Table 2. Performance Comparison between CNN-Mamba and Baseline Models

Mirtric (@) (b) () (d) (e) (€] (h) [©) (k)
GRU4Rec Caser NextltNet SASRec BERT4Rec GCSAN SINE MAmba improve
Recall@5 0.3536 0.3145 0.2894 0.3960 0.3042 0.3531 0.3679 0.4133 +4.40%
Recall@10 0.4593 0.4232 0.3955 0.4880 0.4097 0.4468 0.4663 0.5080 +4.11%
NDCG@5 0.2631 0.2237 0.2020 0.3081 0.2196 0.2719 0.2750 0.3188 +3.94%
NDCG@10 0.2971 0.2589 0.2361 0.3382 0.2536 0.3020 0.3068 0.3510 +3.97%
Dataset Recall@5 0.3689 0.3365 0.3365 0.4015 0.3178 0.3629 0.3867 0.4201 +4.78%
Recall@10 0.4687 0.4372 0.4371 0.4940 0.4165 0.4555 0.4807 0.5170 +4.52%
NDCG@5 0.2808 0.2469 0.2469 0.3127 0.2350 0.2770 0.2934 0.3239 +3.62%
NDCG@10 0.3130 0.2793 0.2788 0.3426 0.2666 0.3066 0.3238 0.3551 +3.76%
Recall@5 0.3388 0.3174 0.3275 0.3768 0.3038 0.3304 0.3752 0.4090 +8.82%
Recall@10 0.4610 0.4418 0.4580 0.4992 0.4270 0.4459 0.4931 0.5409 +8.68%
NDCG@5 0.2438 0.2226 0.2291 0.2777 0.2128 0.2368 0.2612 0.3010 +8.68%
NDCG@10 0.2829 0.2628 0.2708 0.3172 0.2525 0.2737 0.3008 0.3440 +8.56%

The experimental results are shown in Table 2, where the
bold numbers indicate the best results for each metric, and the
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underlined numbers indicate the second-best results. The
results demonstrate that the proposed model achieves



improvements in the Recall@5, Recall@10, NDCG@S5, and
NDCG@10 metrics across the three datasets (Toys, Beauty,
and Sports).

Among the baseline models, Caser and SASRec represent
methods based on convolutional neural networks and self-
attention mechanisms, respectively. Caser introduces a
convolutional structure on top of GRU4Rec, effectively
capturing local interests and performing particularly well in
short-term interest modeling. SASRec, on the other hand,
leverages the self-attention mechanism to effectively capture
global dependencies in user behaviors, showing significant
advantages especially with long sequence data. Compared
with the RNN-based GRU4Rec and CNN-based Caser,
SASRec and BERT4Rec, which are based on self-attention,
achieve superior performance in capturing global interests.
Methods based on graph neural networks (GCSAN and
HGNN) also perform well in modeling complex relationships
between users and items, as they can capture
interdependencies among items; however, they are relatively
weaker in modeling local interests.

The CNN-Mamba model proposed in this paper effectively
models both short-term and long-term user interests by
combining convolutional neural networks with state space
models. Thanks to the convolutional layers for capturing local
interests and the state space model for global dependency
modeling, CNN-Mamba provides more accurate and diverse
recommendation results.

4.6. Ablation Study Analysis

To investigate the impact of the key components of CNN-
Mamba on recommendation performance, two different
model variants were designed: CNN-only and SSM-only,
with NDCG@10 chosen as the primary evaluation metric.
CNN-only refers to removing the state space model (SSM)
from the complete model while retaining only the CNN
structure, whereas SSM-only refers to removing the CNN
structure while retaining only the SSM.

The performance of these different variants on the Toys,
Beauty, and Sports datasets is shown in Table 3.

Table 3. Impact of Model Components on Recommendation

Performance
NDCG@10
Model Toys Beauty Sports
CNN-only 0.3430 0,3465 0.3340
SSM-only 0.3440 0.3492 0.3360
CNN-
Mamba 0.3510 0.3551 0.3440

Overall, the proposed CNN-Mamba structure outperforms
other variants across all datasets, indicating that the
combination of CNN and SSM is the key to the model’s
success. Removing either component significantly degrades
recommendation performance, demonstrating the
complementarity of short-term and long-term interest
modeling. By integrating the local feature extraction
capability of CNN with the global dependency modeling
capability of SSM, CNN-Mamba is able to handle both short-
term and long-term interests simultaneously, thereby
achieving superior performance across multiple datasets.

4.7. Imapct of Key Hyperparameters

In this section, experiments are conducted on the Beauty
dataset, using NDCG@10 and Recall@10 as evaluation
metrics to analyze the impact of convolution kernel size K,
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activation functions, and hidden layer dimensions ~ ™°d¢lon

the experimental results.

4.7.1. Impact of Convolution Kernel Size k

Keeping other parameters unchanged, the convolution
kernel sizes were setto 3, 5, 7, 9, 11], and experiments were
conducted under different kernel sizes using the Beauty
dataset to obtain the NDCG@10 values. The experimental
results are shown in Figure 2. As can be seen from Figure 2,
as the convolution kernel size increases, the model
performance exhibits a fluctuating trend, with the best
performance achieved at k = 7. Increasing the kernel size
allows the model to capture more local features, but when the
kernel size continues to grow, the performance improvement
becomes marginal, and at k = 11 a slight decline is observed.
This indicates that, on the Beauty dataset, an excessively large
convolution kernel leads to overfitting, and thus a moderate
kernel size can achieve better performance.
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Figure 2. Analysis of Kernel Size k

4.7.2. Activation Function

The activation functions were set to [GELU, ReLLU, Swish,
TanH, Sigmoid], and the results are shown in Figure 3. As the
activation functions varied, the recommendation performance
of the model exhibited different trends. When using the
GELU activation function, the model achieved the best
performance, with the NDCG@10 metric reaching the
highest value. As the activation function switched from ReLU
to other forms, the evaluation metrics of the model declined,
indicating that the choice of an appropriate activation function
is also crucial to the model’s final performance.
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Figure 3. Analysis of Different Activation Functions

4.7.3. Hidden Layer Dimensions
The hidden layer dimensions were set to [16, 32, 64, 96,



128], and the results are shown in Figure 4. As the hidden
layer dimension h increases, the model performance gradually
declines, with a particularly sharp drop observed when the
hidden layer dimension exceeds 32. This indicates that, in this
experiment, larger hidden layer dimensions lead to a decrease
in performance, showing a negative effect. This trend
suggests that excessively large hidden layer dimensions make
the model more complex and prone to overfitting. Therefore,
selecting a moderate dimension can effectively improve the
model’s representation capability.
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Figure 4. Analysis of Hidden Layer Dimensions

5. Conclusion

To address the insufficient capability of long-term interest
modeling and the inadequate modeling of short-term interest
variations in sequential recommendation, this paper proposes
a recommendation framework that integrates convolutional
neural networks with state space models. The CNN structure
is employed to model users’ recent interaction behaviors and
extract local interest dynamics, while the Mamba model is
introduced as the long-term interest modeling module to
capture global features in user behavior sequences. On this
basis, a collaborative modeling structure for long-term and
short-term interests is designed to achieve multi-scale
representation of user interests. Experimental results
demonstrate that the proposed model outperforms existing
methods on multiple public datasets, validating its
effectiveness and practicality in modeling dynamic user
interests.
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