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Abstract: Sequential recommendation aims to predict users' future preferences by analyzing their historical behavior 

sequences. In recent years, deep learning techniques have been widely applied to sequential recommendation tasks, achieving 

remarkable improvements in recommendation accuracy. However, existing methods often suffer from structural imbalance in 

modeling the rapidly changing short-term interests and the relatively stable long-term preferences of users. Moreover, these 

methods face limitations such as high computational costs and low inference efficiency when dealing with long behavior 

sequences. To address these challenges, this paper proposes a novel sequential recommendation model named CNN-Mamba, 

which integrates Convolutional Neural Networks (CNN) with State Space Models (SSM). Specifically, the CNN component 

leverages local receptive fields to efficiently extract short-term interest features from recent user interactions, thereby enhancing 

the model’s ability to capture local behavior patterns. Meanwhile, the SSM component is introduced as a long-term interest 

modeling module to capture global dependencies within long sequences. Furthermore, an adaptive fusion layer is designed to 

dynamically integrate the short- and long-term modeling outputs, thereby improving the model's generalization ability. In 

addition, the implicit recurrence mechanism in the state space model effectively reduces computational complexity and enhances 

the efficiency of long-sequence modeling. Experimental results on three real-world datasets demonstrate that the proposed CNN-

Mamba model outperforms state-of-the-art baselines in both recommendation accuracy and inference efficiency, validating its 

effectiveness and practicality. 

Keywords: State Space Model; Convolutional Neural Network; Sequential Recommendation; Long- and Short-Term Interest 

Modeling. 

 

1. Introduction 

In today’s era of information overload, recommendation 

systems have become a key technology for delivering 

personalized content [1]. As an important branch of 

recommendation systems, sequential recommendation 

predicts items that users may be interested in by analyzing 

their historical behavior sequences, thereby enhancing user 

experience and recommendation performance. Unlike 

traditional static recommendation methods, sequential 

recommendation focuses on the dynamic evolution of user 

interests over time and captures temporal dependency 

patterns within user behaviors to improve the accuracy of 

personalized recommendations [2]. However, due to the 

complexity of user interests and the highly dynamic nature of 

behavioral sequences, efficiently modeling short-term interest 

fluctuations and long-term interest stability remains a 

significant challenge in sequential recommendation. Section 

Headings 

At present, sequential recommendation has evolved from 

traditional statistical methods to deep learning-based 

approaches. Early methods primarily relied on Markov chains 

and matrix factorization. These methods were able to mine 

latent features from user–item interaction matrices but did not 

explicitly account for the order of interactions, thus failing to 

capture the temporal changes in user preferences. Another 

class of traditional approaches employed Markov chains to 

model sequential dependencies. Rendle et al. [3] proposed the 

FPMC model, which combines matrix factorization with a 

first-order Markov chain to jointly model users’ long-term 

and short-term preferences. Compared with traditional 

collaborative filtering methods, FPMC achieved superior 

performance in sequential prediction tasks. However, it still 

has limitations: Markov chain-based approaches rely heavily 

on the most recent interactions and struggle to capture global 

information. In addition, static models such as matrix 

factorization ignore the temporal evolution of user interests; 

when user preferences change rapidly, these models cannot 

update accordingly, leading to recommendations that lack 

timeliness and fail to adapt to dynamic user interests. 

The rise of deep learning has injected new vitality into 

sequential recommendation. In particular, recurrent neural 

networks (RNNs) and their variants have been widely adopted 

for handling long sequences. Hidasi et al. [4] introduced the 

classical GRU4Rec model, which was the first to apply gated 

recurrent units (GRUs) to session-based recommendation 

tasks, demonstrating the powerful capability of RNNs in 

modeling user click sequences. RNN-based approaches can 

encode entire historical sequences into hidden states, 

theoretically capturing dependencies of arbitrary length and 

extracting richer long-term semantic information compared to 

Markov chains. In data-rich scenarios, RNN-based sequence 

models often significantly outperform simple Markov chain 

models. However, RNN-based models also have inherent 

drawbacks. First, the recursive computation pattern of RNNs 

makes parallelization difficult, as the computation of 

subsequent states depends on the results of previous steps. 

Second, RNN models contain a large number of parameters 

and complex training processes; under data-sparse conditions, 

they are prone to overfitting and gradient vanishing problems, 

requiring large amounts of training data to fully learn 

sequential patterns. Consequently, although recurrent 

networks enhance sequence modeling capabilities, their 

performance and efficiency remain limited in tasks involving 

long sequences, high sparsity, or strict real-time requirements. 

Convolutional neural networks (CNNs), with their parallel 
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computing capabilities and local receptive fields, have 

emerged as a promising direction for sequential 

recommendation. Unlike RNNs that process sequences step 

by step, CNNs can apply convolution operations to fixed-

length recent interaction segments to capture local patterns, 

thereby effectively modeling users’ short-term dynamic 

interests. Tang et al. [5] proposed the Caser model, a 

representative of this approach. Caser stacks embeddings of 

the user’s most recent L interactions into a two-dimensional 

“time–latent space” matrix, treating it as an image, and 

applies convolutional filters over this image to extract local 

sequential patterns. Through horizontal and vertical 

convolutions, Caser can simultaneously characterize users’ 

general preferences and short-term sequential preferences 

within a unified network. Experiments have shown that Caser 

consistently outperformed other sequential recommendation 

algorithms on multiple public datasets. However, models 

purely based on convolutional neural networks also face 

certain limitations. Since the length L of the convolutional 

window is usually fixed, the range of historical interactions 

directly utilized by the model is limited; when user interest 

evolution involves long-term dependencies far beyond the 

window length, the model may fail to adequately capture 

earlier preference changes. Therefore, how to leverage the 

efficiency of CNNs in capturing short-term patterns while 

enhancing the modeling of long-term interests remains a key 

problem to be addressed in CNN-based sequential models. 

Recently, the success of Transformers and other self-

attention mechanisms in sequence modeling has drawn 

significant attention in the recommendation field. Kang et al. 

[6] pioneered the introduction of the Transformer encoder into 

sequential recommendation with the SASRec model, which 

leverages self-attention mechanisms to model user behavior 

sequences. SASRec captures long-range dependencies 

similar to RNNs while simultaneously emphasizing recent 

important behaviors like Markov chains, making the model 

highly adaptable to datasets with varying levels of sparsity. 

Experimental results on multiple benchmark datasets 

demonstrate that SASRec significantly outperforms previous 

sequential recommendation algorithms. 

Building on SASRec, Sun et al. [7] proposed BERT4Rec, 

which incorporates a bidirectional Transformer encoder to 

fully utilize bidirectional contextual information. Unlike 

traditional unidirectional models that rely solely on historical 

information to predict the next item, BERT4Rec randomly 

masks portions of sequences during training, allowing the 

model to infer masked items by jointly leveraging both left 

and right contexts of the target item. This pretraining 

paradigm avoids the issue of target information leakage in 

bidirectional modeling and substantially enhances the 

precision of sequence representations. Experimental results 

show that BERT4Rec achieved superior recommendation 

performance on multiple public datasets compared to 

previous unidirectional sequential models. However, these 

models typically have a large number of parameters and high 

computational costs, making them less suitable for scenarios 

that demand high real-time performance or are constrained by 

limited computational resources. Thus, improving the 

efficiency of these models and achieving a more robust 

integration of short-term and long-term interest modeling 

remain significant challenges. 

Unlike Transformer-based architectures with attention 

mechanisms, state space models (SSMs) have recently 

emerged as a promising paradigm in sequence modeling tasks. 

Gu et al. introduced the Mamba model [8], which employs a 

selective state space mechanism to eliminate the sequential 

processing bottleneck inherent in traditional recurrent 

structures, achieving linear time complexity while effectively 

capturing long-range dependencies. Mamba has 

demonstrated performance comparable to or even surpassing 

that of Transformers across multiple long-sequence tasks, 

such as natural language processing, while delivering better 

inference efficiency and substantial resource savings. 

Subsequently, Dao et al. proposed Mamba2 [9], improving 

the state transition structure and feature representation, 

thereby enhancing the stability and generalization ability of 

the model in complex sequential tasks. 

Given the strong memory retention and global modeling 

capabilities of state space models in long-term interest 

modeling, this paper draws inspiration from the structural 

design of the Mamba family of models, using it as the long-

term interest modeling module. Combined with the local 

feature extraction strength of CNNs in capturing short-term 

interests, we design a hybrid personalized recommendation 

model, CNN-Mamba, to enhance the representational power 

and performance of sequential recommendation in dynamic 

environments. Despite the significant breakthroughs achieved 

by the Mamba family in long-sequence modeling, they still 

face limitations. Since SSMs mainly rely on linear dynamic 

systems to model sequential information, they exhibit limited 

capability in capturing complex local nonlinear interest 

variations. This issue becomes particularly pronounced in 

recommendation scenarios where users' short-term interests 

fluctuate rapidly, making it challenging to precisely capture 

fine-grained behavioral patterns. 

To address these challenges, this paper proposes a novel 

sequential recommendation model named CNN-Mamba. This 

model exploits the strength of convolutional neural networks 

in extracting local patterns to model short-term interest 

dynamics from recent user behaviors. Meanwhile, it leverages 

the state space model’s capability in global dependency 

modeling to capture the evolving trends of users' long-term 

preferences. By integrating the local feature extraction ability 

of CNNs with the global sequence modeling power of SSMs, 

CNN-Mamba simultaneously models both short-term and 

long-term user interests, thereby improving the accuracy and 

diversity of sequential recommendations. 

The key contributions of this paper can be summarized as 

follows: 

1). We propose a hybrid sequential recommendation model 

that integrates CNN and the Mamba state space model. The 

architecture includes an embedding layer, the CNN-Mamba 

module, an adaptive fusion layer, and a prediction layer. This 

design enables the dynamic fusion of long-term and short-

term interests, fully leveraging CNN’s efficiency in short-

term interest modeling while capitalizing on Mamba’s 

capacity for global dependency modeling in long-term 

interest modeling. 

2). We design a CNN-Mamba fusion strategy that achieves 

collaborative optimization of short-term and long-term 

interests, overcoming the information segmentation issue 

present in traditional models. This allows short-term interests 

to effectively influence long-term modeling while enabling 

long-term interests to stabilize the representation of short-

term interests, thereby enhancing recommendation quality. 

3). The model optimizes computational efficiency and 

improves recommendation effectiveness. Compared with 

Transformer-based architectures, CNN-Mamba reduces 
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computational complexity, making the model more scalable 

for long-sequence modeling tasks. 

4). Extensive experiments conducted on three real-world 

datasets demonstrate that CNN-Mamba outperforms baseline 

models across multiple evaluation metrics. 

2. Related Work  

2.1. Sequential Recommendation 

Sequential recommendation is a method that predicts users’ 

future preferences by leveraging their behavioral sequences. 

Unlike traditional collaborative filtering methods, which are 

based solely on static user–item interaction data, sequential 

recommendation emphasizes temporal patterns, dynamically 

modeling user behavior to identify the evolution of user 

interests and generate more personalized recommendations. 

Early sequential recommendation methods were primarily 

based on Markov chains and collaborative filtering. Markov 

chains [10] build transition matrices to capture users’ short-

term behaviors and are well suited for modeling transitions 

between adjacent behaviors. However, because they rely only 

on the most recent interactions, they struggle to capture long-

range dependencies within sequences. Collaborative filtering 

algorithms [11], which recommend items by identifying 

similar users or items, also perform poorly when handling the 

temporal dependencies and dynamic variations inherent in 

sequential data. With the growth of data volume, sequential 

recommendation models have increasingly evolved toward 

deep learning methods. Deep learning models offer strong 

capabilities for capturing complex patterns, allowing for more 

flexible modeling of both short-term and long-term user 

preferences. Against this backdrop, convolutional neural 

networks (CNNs) have emerged as an important direction for 

sequential recommendation research due to their advantages 

in short-term interest modeling. 

2.2. CNN-based Sequential Recommendation 

Algorithms 

Convolutional neural networks, known for their efficient 

local feature extraction capabilities [12], are widely used in 

sequential recommendation, particularly for short-term 

interest modeling. By leveraging local receptive fields, CNNs 

can efficiently extract localized patterns from user behavior 

sequences and progressively build more complex feature 

representations through stacked convolutional layers. 

Compared with traditional recurrent neural networks (RNNs), 

CNNs can process sequence data in parallel, avoiding the 

computational bottlenecks that occur when handling long 

sequences in traditional networks.   

The Caser model is a classic CNN-based sequential 

recommendation model. Caser uses horizontal and vertical 

convolutions to capture user behavioral patterns along the 

temporal axis and interaction features between users and 

items, thereby enabling precise modeling of short-term 

interests [13]. Additionally, the S3Rec model [14] builds upon 

Caser by introducing multi-scale convolutional kernels, 

which further enhance the ability to extract multi-level 

features. This enables CNNs to simultaneously capture short-

term fluctuations and long-term trends within user sequences. 

The multi-scale design allows S3Rec to excel in modeling 

complex user behaviors, as it considers changes in user 

interests across multiple scales, improving both accuracy and 

robustness.   

However, despite their advantages in short-term interest 

modeling, CNN-based methods also have significant 

limitations. First, the local receptive fields of CNNs restrict 

their ability to model long sequences and capture global 

dependencies effectively. In addition, CNNs model temporal 

dependencies in an indirect manner; while stacking more 

convolutional layers can expand the receptive field, such 

methods are still limited in capturing complex temporal 

dependencies and cannot fully reflect the evolving nature of 

user interests. 

2.3. Attention-based Sequential 

Recommendation 

Attention mechanisms dynamically assign weights to each 

time step of user behaviors, enabling more flexible modeling 

of evolving user interests. By adaptively distributing attention 

weights, attention mechanisms capture global dependencies 

across time steps, providing stronger capabilities for 

modeling long sequences [15].  

Kang et al. [6] introduced the SASRec model, which adopts 

a self-attention-based architecture. Unlike traditional 

recurrent neural networks, SASRec calculates relationships 

between each position in the sequence and all others, 

effectively capturing dynamic changes in short-term 

dependencies. Through stacked self-attention layers, SASRec 

incrementally extracts user interest features and produces 

accurate recommendations. This model also effectively 

avoids gradient vanishing and information loss issues that are 

common in RNNs. Sun et al. [7] further proposed the 

BERT4Rec model, which employs a bidirectional self-

attention architecture. This structure enables the model to 

consider both forward and backward dependencies in user 

behavior sequences, thereby capturing complex dependencies 

comprehensively. BERT4Rec not only improves long-

sequence modeling capabilities but also adopts a pretraining-

and-finetuning framework. This allows the model to be 

pretrained on large-scale unlabeled datasets and then fine-

tuned on specific recommendation tasks, significantly 

enhancing generalization performance. However, despite 

their strong ability in long-sequence modeling, attention-

based models still face limitations in local feature extraction 

and computational complexity [16]. First, the computational 

complexity of attention mechanisms is high, especially when 

processing very long sequences, where the complexity of self-

attention reaches O(n²). This can create computational 

bottlenecks and hinder performance on large-scale datasets.  

To further improve efficiency and representational capacity 

in long-sequence modeling, Gu et al. [8] proposed a state 

space modeling framework. Among these, the Mamba model 

has gained significant attention for its linear-time complexity 

and global modeling capability. By constructing selective 

state space representations, the Mamba model maintains the 

advantages of parallel computation while effectively 

capturing long-range dependencies, thus overcoming the high 

complexity and low efficiency issues of attention mechanisms 

in long-sequence modeling. However, the Mamba model still 

shows limitations in capturing users’ recent preferences.   

To address these existing challenges, this study proposes a 

hybrid model that integrates convolutional neural networks 

and self-attention mechanisms, while further improving the 

architecture by introducing state space models. In this design, 

CNNs are employed to model users’ recent preferences, while 

the state space model is leveraged to capture long-term 

preferences, enabling more comprehensive sequential 

recommendation. 
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3. CNN-Mamba 

The framework of the proposed model is illustrated in 

Figure 1, where the input sequence represents the user’s 

historical interaction records, denoted as x₁, x₂, …, xᵢ, with 

each element xᵢ indicating the user’s interaction behavior at 

time step i. The model mainly consists of the following 

components: an embedding layer, a short-term interest 

modeling module, a long-term interest modeling module, and 

an adaptive fusion layer. In the embedding layer, user 

behavior sequences are mapped into dense vector . 

In this study, U represents the set of all users, where |U| 

denotes the number of users, and |V| denotes the number of 

items. The interaction sequence of a user u is denoted as Sᵤ = 

{v₁, v₂, …, vₙ}, arranged in chronological order, where each 

vᵢ ∈ V indicates an item the user u interacted with at time 

step i. The objective of sequential recommendation is to 

predict the next item with which user u will interact at time 

step n+1. Sequential recommendation achieves this by 

learning the conditional probability.P(v | Sᵤ¹:ⁿ; θ),where θ 

represents the model parameters, and v ∈ V is any candidate 

item in the item set. This conditional probability distribution 

characterizes the likelihood that the user will interact with 

each candidate item given their historical interaction 

behaviors. By maximizing this conditional probability 

distribution, the model produces optimal recommendation 

results, generating the most probable next-item 

recommendation for the user. 

 

Figure 1. CNN-Mamba 
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information for the user’s behavior sequence. By generating 

learnable embeddings with the same dimensionality as the 
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model to capture temporal patterns within the sequence. 

Finally, by summing the item embeddings and positional 
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3.2. CNN-Mamba 

3.2.1. Short-Term Interest Module 

The short-term interest module aims to capture user 

behavior sequences through convolution operations and 

dynamically adjust the importance of features by 

incorporating the attention mechanism. The input features of 

the module are as follows:
1

( )

l

uH
−

，The input features of the first 

layer
0

( )uH   are the feature representations generated by the 

embedding layer: 
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1:
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n

uS  denotes the 

historical behavior sequence of user u, and represents the 

embedding operation, which includes the combination of item 

embedding and positional embedding. The features generated 

by the embedding layer serve as the input of the first layer, 

while the input features of the subsequent layers are provided 

by the output of the previous layer.“In the short-term interest 

module, is first 

1

( )

l

uH
−

subjected to a linear transformation and 

the feature distribution is stabilized through layer 

normalization, with the formula as follows: 
1 1

( ) ( )( ) LN(Dpt(Linear ( )))en l l

local u en uH H− −=        (1) 

Linear denotes a fully connected linear transformation, Dpt 

denotes the Dropout operation, and LN refers to the layer 

normalization operation, which is used to improve the 

training stability of the model. 

The normalized features

1

( )( )en l

local uH
−

  are extracted 

through multiple one-dimensional convolution operations 

(Conv1D) with kernel size k = 3 to obtain local features. For 

time step j, the output of the m-th convolution kernel is given 

by the following formula: 

( )1

( ) [ : 1]( )m en l m

j local u j j kC H F−

+ −=       (2) 

1

( ) [ : 1]( )en l

local u j j kH −

+ − denotes the features within the sliding 

window from position j to j+k-1; 
mF  denotes the m-th 

convolution kernel;  is the activation function.  

At each position j, the outputs of the convolution kernels 

are integrated through concatenation to generate the local 

feature representation, as shown in the following formula: 
3 1 1

( )Conv ( ( )) Concat( , , )k en l m m

mid local u j j jH C C= − =    (3) 

Here, Concat indicates concatenating the results of multiple 

convolution kernels along the feature dimension. Finally, the 

convolution results are concatenated across the entire 

sequence into a holistic representation and further optimized 

through dropout and layer normalization, as shown in the 

following formula: 

To further emphasize key features, the convolution results 

are dynamically weighted through a squeeze-attention 

mechanism, and the final short-term interest feature 

representation is obtained as follows: 

3 1 3 1 3 1

( ) ( ) 1 ( )Conv ( ( )) LN(Dpt([Conv ( ( )) , ,Conv ( ( )) ]))k en l k en l k en l

mid local u mid local u mid local u nH H H= − = − = −=       (4) 

3 1 3 1

Conv ( ) ( )SEAtt(Conv ( ( ))) Conv ( ( ))k en l k en l

mid local u mid local uL H H= − = −=                  (5) 

 denotes the element-wise multiplication operation, and 

represents the attention mechanism that generates dynamic 

weights using the global context. 
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3.2.2. Long-Term Interest Module 

Since long-term interest modeling in recommendation 

systems requires handling the global dependencies of users’ 

historical behavior sequences, the traditional self-attention 

mechanism captures the correlations among features through 

three matrices: Query (Q), Key (K), and Value (V). However, 

the Softmax operation in self-attention has high 

computational complexity, making it difficult to meet the 

modeling requirements for long sequence data. In contrast, 

the structured state space model achieves efficient modeling 

through linearized computation. 

By combining the linear state space modeling of SSD, the 

input features establish causal dependencies between time 

steps via a mask matrix, generating global feature 

representations, as shown in the following formula: 
1 1

( ) ( )SSD( ( )) LN(Dpt( ( )))en l en l

global u global uH H− −=   (6) 

Here, is the mask matrix, which is used to simulate the state 

transition relationships, ensuring that the current time step 

depends only on the previous time steps and preventing the 

leakage of future information. The matrix   is defined as 

follows: 

,

, if ,

0, otherwise.

i

k

k ji j

a i j
=



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



           (7) 

Next, the input features
1
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  are further mapped 

into the 
1
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global uQ H W−=
 ,

1
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global uK H W−=
 , and  

1

( )( )en l V

global uV H W−=
. Based on the SSD attention mechanism, 

linearized computation is used to replace the traditional 

Softmax operation, as expressed in the following formula: 

Att( , , ) ( )Q K V Q K V=            (8) 

Q K
is used for the dot-product operation between the 

Query and Key to measure the similarity between time steps; 

V is the Value matrix, through which the final global feature 

representation is obtained by weighted computation. Finally, 

by incorporating the dynamic weighting mechanism SEAtt, 

the generated global feature representation is further 

dynamically adjusted, as shown in the following formula: 
1 1

( ) ( )SEAtt(SSD( ( ))) SSD( ( ))en l en l

global u globl g alon uG H H− −=
     

                       (9) 
Here, SEAtt refers to the squeeze-and-excitation attention 

mechanism, which enhances the adaptability of feature 

representations through channel-wise weighted adjustment. 

3.3. Adaptive Fusion Layer 

The adaptive fusion layer achieves personalized modeling 

of user behavior sequences by dynamically integrating short-

term and long-term interest features. First, the output features 

of the historical behavior 

1

( )

l

uH
−

 sequence are subjected to 

global average pooling to obtain the global representation, as 

shown in the following formula

1

Pool ( )( )l

uH
−

: 

1 1

Pool ( ) ( ),

1

1
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n
l l
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t

H H
n
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=
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Subsequently, the global representation is passed through a 

linear transformation and a sigmoid activation function to 

compute the adaptive fusion weight
Ada( )u

, as shown in the 

following formula: 

( )( )1 1

( ) Pool ( )Ada( )( ) Linear ( )l l

u mid uu H H− −= (11) 

  is the activation function, which is used to map the 

weights into the range [0, 1]. Finally, the adaptive weights

Ada( )u
  are applied to the short-term interest features 

ConvL
 and long-term interest features longG

 for weighted 

fusion, producing the final feature representation, as shown in 

the following formula: 

( )final 1 1

( ) Conv ( )Ada( )( ) 1 Ada( )( )long

long long

l l

u uM u H M u H G− −=  + −  (12) 

1

( )1 Ada( )( )l

uu H −−
 is the complementary value, 

representing the weight of the long-term interest features. 

When 
Ada( )u

 approaches 0, the weight of long-term 

interest features is higher; when 
Ada( )u

approaches 1, the 

weight of short-term interest features is higher. 

3.4. Prediction Layer 

After aggregating the information from all positions across 

the L layers, we obtain the final output of all items in the input 

sequence ( )

L

uH . Then, the feature at the n-th time step is taken

( )[ ]L

uH n
 and mapped into a high-dimensional space through 

a linear transformation and an activation function. 

Subsequently, the mapped feature is dot-multiplied tableE
 

with the shared item embedding table 
Ob and added with a 

bias term to obtain the scores of all candidate items, as shown 

in the following formula: 

( )( )( 1) Pred Pred

out ( ) ( ) table
ˆ( ) [ ]n L T O

u uo H n W b E b + = + + (13) 

   denotes the softmax function, which normalizes the 

item scores into a probability distribution, ultimately 

outputting the probability of the item that the user is most 

likely to choose in the next step. 

4. Experiments and Results Analysis 

To validate the effectiveness of the proposed model, 

relevant experiments were conducted. In this section, we first 

introduce the datasets used in the experiments and the data 

preprocessing methods; then, we describe the baseline models 

for comparison, the evaluation metrics, and the related 

experimental parameters. 

4.1. Datasets 

In this paper, the performance of the CNN-Mamba model 

is evaluated on three publicly available real-world 

recommendation system datasets: Amazon Toys, Sports, and 

Beauty. These datasets are derived from large-scale product 

review data on the Amazon platform and are widely used in 

recommendation system research. The datasets are divided 

according to the top-level categories of products, specifically 

‘Toys and Games,’ ‘Sports and Outdoors,’ and ‘Beauty,’ 

covering user purchase behavior records in different domains. 

The data preprocessing method in this paper is consistent with 

previous studies. Specifically, each rating or review is 

regarded as evidence of a user–item interaction, and each 
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dataset is converted into an implicit dataset. Then, 

interactions are grouped by user ID and sorted according to 

timestamps to form a sequence for each user. 

Table 1. Dataset Statistics 

Dataset Inter Users Items ULen
 ILen

 
Sparsity 

Toys 167597 19411 11926 8.5 14.2 99.94% 

Sports 296338 35599 18456 8.2 16.2 99.91% 

Beauty 198500 22360 12002 8.8 16.5 99.93% 

4.2. Baseline 

To demonstrate the effectiveness of the proposed model, 

the CNN-Mamba model was compared with the following 

baseline models: 

GRU4Rec: A recommendation system based on recurrent 

neural networks that captures the dynamics of user session 

behaviors through gated recurrent units (GRU). It is a session-

based recommendation model capable of handling the 

temporal dependencies in user behavior sequences. 

Caser: A model that employs horizontal and vertical 

convolutional layers of convolutional neural networks (CNN) 

to capture dynamic features in user behavior sequences and 

extends user interests into multi-layer perceptrons to generate 

the final recommendation results. 

NextItNet: A generative network constructed by stacking 

convolutional layers to capture deep patterns in user 

sequential behaviors. It can efficiently perform next-item 

recommendation and exhibits good scalability. 

SASRec: A model that adopts the Transformer architecture, 

leveraging the self-attention mechanism to model long-range 

dependencies in user behavior sequences, making it suitable 

for long-term interest modeling. 

BERT4Rec: A model based on the Transformer that 

introduces a bidirectional modeling mechanism to simulate 

the contextual information of user behaviors, thereby 

enhancing the global modeling capability of user behavior 

sequences. 

GCSAN [17]: A model that combines graph contextual 

information with the self-attention mechanism, enhancing the 

modeling of graph-structured data by capturing the 

relationships between users and items in session-based 

recommendation. 

SINE [18]: A sparse interest network designed to address 

the sparsity of user interest distributions, which optimizes 

sequential recommendation performance through an adaptive 

mechanism. 

4.3. Evaluation Metrics 

This paper adopts two popular performance evaluation 

metrics in recommendation systems to measure the 

effectiveness of recommendation algorithms: Recall@K and 

NDCG@K (Normalized Discounted Cumulative Gain). 

Recall@K: This metric is used to evaluate the accuracy of 

recommendation algorithms. It is defined as the ratio of the 

number of positive samples T(u) in the recommendation list 

to the total number of samples (N). 

( )
Recall@K

T u

N
=

 
NDCG@K (Normalized Discounted Cumulative Gain): 

This metric not only measures the accuracy of the 

recommendation system but also evaluates the rationality of 

the ranking in the recommendation results, emphasizing the 

contribution of correctly recommended items at higher ranks. 

1 2

1 1
NDCG @ K

log (rank 1)

N

iN =

=
+


 

In this paper, the values of K are set to 1, 5, and 10 for 

comparison with the baseline methods. The higher the values 

of these evaluation metrics, the better the prediction results. 

4.4. Experimental Details 

The open-source framework RecBole was used to evaluate 

the baseline models, and grid search was adopted to optimize 

the hyperparameters of each model. For each baseline 

algorithm, the following parameter settings were applied: 

hidden layer dimension h = {16, 32, 64, 128}, convolution 

kernel size k = {3, 5, 7, 9, 11}, activation functions selected 

from
{Re , , igmoid}LU GELU S =

 , dropout rate for the attention 

mechanism set to
1 1

2 [1 ,1 ]d e e− −
 , and learning rate range set 

to
8 1[1 ,1 ]e e − −  . All models used the Adam optimizer with 

hyperparameters 2 0.999 =
  , and L2 regularization 

( 0.001 = ). The learning rate was initialized at
0.001 =

 and 

decayed during training. The training epochs were set to 20. 

In terms of data processing, all datasets were uniformly set 

with a maximum sequence length of N = 50, and padding was 

used for sequence completion. To ensure consistency of the 

experiments, all models adopted the same training settings. 

4.5. Overall Performance Comparison 

Table 2. Performance Comparison between CNN-Mamba and Baseline Models 

Dataset 

Mrtric 

 

(a) (b) (c) (d) (e) (g) (h) (j) (k) 

GRU4Rec Caser NextItNet SASRec BERT4Rec GCSAN SINE MAmba improve 

Recall@5 0.3536 0.3145 0.2894 0.3960 0.3042 0.3531 0.3679 0.4133 +4.40% 

Recall@10 0.4593 0.4232 0.3955 0.4880 0.4097 0.4468 0.4663 0.5080 +4.11% 

NDCG@5 0.2631 0.2237 0.2020 0.3081 0.2196 0.2719 0.2750 0.3188 +3.94% 

NDCG@10 0.2971 0.2589 0.2361 0.3382 0.2536 0.3020 0.3068 0.3510 +3.97% 

Recall@5 0.3689 0.3365 0.3365 0.4015 0.3178 0.3629 0.3867 0.4201 +4.78% 

Recall@10 0.4687 0.4372 0.4371 0.4940 0.4165 0.4555 0.4807 0.5170 +4.52% 

NDCG@5 0.2808 0.2469 0.2469 0.3127 0.2350 0.2770 0.2934 0.3239 +3.62% 

NDCG@10 0.3130 0.2793 0.2788 0.3426 0.2666 0.3066 0.3238 0.3551 +3.76% 

Recall@5 0.3388 0.3174 0.3275 0.3768 0.3038 0.3304 0.3752 0.4090 +8.82% 

Recall@10 0.4610 0.4418 0.4580 0.4992 0.4270 0.4459 0.4931 0.5409 +8.68% 

NDCG@5 0.2438 0.2226 0.2291 0.2777 0.2128 0.2368 0.2612 0.3010 +8.68% 

NDCG@10 0.2829 0.2628 0.2708 0.3172 0.2525 0.2737 0.3008 0.3440 +8.56% 

The experimental results are shown in Table 2, where the 

bold numbers indicate the best results for each metric, and the 

underlined numbers indicate the second-best results. The 

results demonstrate that the proposed model achieves 
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improvements in the Recall@5, Recall@10, NDCG@5, and 

NDCG@10 metrics across the three datasets (Toys, Beauty, 

and Sports). 

Among the baseline models, Caser and SASRec represent 

methods based on convolutional neural networks and self-

attention mechanisms, respectively. Caser introduces a 

convolutional structure on top of GRU4Rec, effectively 

capturing local interests and performing particularly well in 

short-term interest modeling. SASRec, on the other hand, 

leverages the self-attention mechanism to effectively capture 

global dependencies in user behaviors, showing significant 

advantages especially with long sequence data. Compared 

with the RNN-based GRU4Rec and CNN-based Caser, 

SASRec and BERT4Rec, which are based on self-attention, 

achieve superior performance in capturing global interests. 

Methods based on graph neural networks (GCSAN and 

HGNN) also perform well in modeling complex relationships 

between users and items, as they can capture 

interdependencies among items; however, they are relatively 

weaker in modeling local interests. 

The CNN-Mamba model proposed in this paper effectively 

models both short-term and long-term user interests by 

combining convolutional neural networks with state space 

models. Thanks to the convolutional layers for capturing local 

interests and the state space model for global dependency 

modeling, CNN-Mamba provides more accurate and diverse 

recommendation results. 

4.6. Ablation Study Analysis 

To investigate the impact of the key components of CNN-

Mamba on recommendation performance, two different 

model variants were designed: CNN-only and SSM-only, 

with NDCG@10 chosen as the primary evaluation metric. 

CNN-only refers to removing the state space model (SSM) 

from the complete model while retaining only the CNN 

structure, whereas SSM-only refers to removing the CNN 

structure while retaining only the SSM. 

The performance of these different variants on the Toys, 

Beauty, and Sports datasets is shown in Table 3. 

Table 3. Impact of Model Components on Recommendation 
Performance 

Model 
NDCG@10 

Toys Beauty Sports 

CNN-only 0.3430 0,3465 0.3340 

SSM-only 0.3440 0.3492 0.3360 

CNN-

Mamba 
0.3510 0.3551 0.3440 

Overall, the proposed CNN-Mamba structure outperforms 

other variants across all datasets, indicating that the 

combination of CNN and SSM is the key to the model’s 

success. Removing either component significantly degrades 

recommendation performance, demonstrating the 

complementarity of short-term and long-term interest 

modeling. By integrating the local feature extraction 

capability of CNN with the global dependency modeling 

capability of SSM, CNN-Mamba is able to handle both short-

term and long-term interests simultaneously, thereby 

achieving superior performance across multiple datasets. 

4.7. Imapct of Key Hyperparameters 

In this section, experiments are conducted on the Beauty 

dataset, using NDCG@10 and Recall@10 as evaluation 

metrics to analyze the impact of convolution kernel size K, 

activation functions, and hidden layer dimensions modeld
on 

the experimental results. 

4.7.1. Impact of Convolution Kernel Size k 

Keeping other parameters unchanged, the convolution 

kernel sizes were set to [3, 5, 7, 9, 11], and experiments were 

conducted under different kernel sizes using the Beauty 

dataset to obtain the NDCG@10 values. The experimental 

results are shown in Figure 2. As can be seen from Figure 2, 

as the convolution kernel size increases, the model 

performance exhibits a fluctuating trend, with the best 

performance achieved at k = 7. Increasing the kernel size 

allows the model to capture more local features, but when the 

kernel size continues to grow, the performance improvement 

becomes marginal, and at k = 11 a slight decline is observed. 

This indicates that, on the Beauty dataset, an excessively large 

convolution kernel leads to overfitting, and thus a moderate 

kernel size can achieve better performance. 

 

Figure 2. Analysis of Kernel Size k 

4.7.2. Activation Function 

The activation functions were set to [GELU, ReLU, Swish, 

TanH, Sigmoid], and the results are shown in Figure 3. As the 

activation functions varied, the recommendation performance 

of the model exhibited different trends. When using the 

GELU activation function, the model achieved the best 

performance, with the NDCG@10 metric reaching the 

highest value. As the activation function switched from ReLU 

to other forms, the evaluation metrics of the model declined, 

indicating that the choice of an appropriate activation function 

is also crucial to the model’s final performance. 

 

Figure 3. Analysis of Different Activation Functions 

4.7.3. Hidden Layer Dimensions 

The hidden layer dimensions were set to [16, 32, 64, 96, 



 

31 

128], and the results are shown in Figure 4. As the hidden 

layer dimension h increases, the model performance gradually 

declines, with a particularly sharp drop observed when the 

hidden layer dimension exceeds 32. This indicates that, in this 

experiment, larger hidden layer dimensions lead to a decrease 

in performance, showing a negative effect. This trend 

suggests that excessively large hidden layer dimensions make 

the model more complex and prone to overfitting. Therefore, 

selecting a moderate dimension can effectively improve the 

model’s representation capability. 

 

Figure 4. Analysis of Hidden Layer Dimensions 

5. Conclusion 

To address the insufficient capability of long-term interest 

modeling and the inadequate modeling of short-term interest 

variations in sequential recommendation, this paper proposes 

a recommendation framework that integrates convolutional 

neural networks with state space models. The CNN structure 

is employed to model users’ recent interaction behaviors and 

extract local interest dynamics, while the Mamba model is 

introduced as the long-term interest modeling module to 

capture global features in user behavior sequences. On this 

basis, a collaborative modeling structure for long-term and 

short-term interests is designed to achieve multi-scale 

representation of user interests. Experimental results 

demonstrate that the proposed model outperforms existing 

methods on multiple public datasets, validating its 

effectiveness and practicality in modeling dynamic user 

interests. 
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