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Abstract: This paper proposes a simplified audio-guided video face restoration method. The goal is to recover high-quality, 

temporally consistent face videos. We designed a multi-stage framework that integrates audio and visual modalities through 

simple yet effective components. Specifically, we extract low-level HOG features from video frames and MFCC features from 

audio. We then utilize a simplified 3D convolutional network to predict dictionary indices guided by both modalities. A pre-

trained TS-VQGAN decoder reconstructs high-quality frames. Simplified spatio-temporal fidelity modules and optical flow 

smoothing techniques are simultaneously applied to enhance spatio-temporal consistency. Experimental results on the VoxCeleb2 

dataset demonstrate that our method outperforms single-modal methods such as BasicVSR++ and VQF in terms of PSNR, SSIM, 

and LPIPS metrics. This indicates that cross-modal fusion can still deliver consistent performance improvements in practical 

video restoration tasks even under a simplified structure. 

Keywords: Video Face Restoration; Audio-guided Learning; Multimodal Fusion; Temporal Consistency. 

 

1. Introduction 

In practical applications, facial images in videos are often 

severely distorted due to factors such as compression, motion 

blur, and low resolution. This distortion is particularly 

pronounced in surveillance or historical footage. Such 

distortion simultaneously impacts both human visual 

perception and machine recognition performance. Therefore, 

facial image restoration—the process of reconstructing high-

quality facial images from distorted inputs—has become a 

critical task in the field of computer vision. This problem is 

particularly challenging when real reference data is lacking, 

such as in blind restoration scenarios. The goal of this task is 

to preserve as much of the original face's detailed features as 

possible. It corrects image degradation caused by various 

factors, such as noise, blurring, or reduced resolution. 

Traditional face restoration techniques typically rely on image 

processing algorithms, using interpolation, filtering, or 

statistical models for restoration. However, with the 

development of deep learning technology, data-driven 

methods have made significant progress in this field. In 

particular, the introduction of convolutional neural networks 

(CNNs) and generative adversarial networks (GANs) has 

significantly improved restoration results in terms of detail 

recovery and visual quality. 

Blind face restoration is a specific direction in face 

restoration. The focus is on techniques for restoring low-

quality facial images lacking reference information. Unlike 

traditional image restoration methods, blind face restoration 

typically faces the combined effects of various degradation 

factors such as blurring, noise, and low resolution, and cannot 

rely on high-quality prior images as references. In recent 

years, with the advancement of deep learning technology, 

blind face restoration has achieved significant results in static 

image processing, capable of generating high-quality, detail-

rich restoration results. While early works focused on 

restoring still face images, video restoration presents 

additional challenges such as motion blur, inter-frame jitter, 

and inconsistent expressions. 

Although static image restoration techniques are relatively 

mature, research on applying facial restoration technology to 

video processing remains limited [1]. Facial restoration in 

videos not only requires addressing quality issues in 

individual frames but must also consider temporal 

consistency and coherence between video frames [2,3]. This 

technology holds significant potential, not only enhancing the 

visual quality and viewing experience of video content but 

also playing a crucial role in improving the accuracy of facial 

recognition systems, particularly in fields such as security 

surveillance and identity verification. Additionally, the 

application scope of facial restoration technology is 

extremely broad, demonstrating its indispensable value across 

various fields such as security surveillance, financial 

payments, healthcare, video editing, and social media content 

creation. In the future, facial restoration technology is 

expected to deeply integrate with multimodal data, further 

enhancing recognition and restoration efficiency and 

effectiveness through collaborative learning, thereby 

expanding its application scenarios to broader domains [4-6]. 

Audio and visual modalities have a natural semantic 

correlation in facial videos. The MFCC features of speech 

signals are temporally consistent with lip movements, while 

HOG features capture spatial gradient information of facial 

structures. This complementarity provides a theoretical basis 

for multimodal fusion: audio can serve as a semantic 

constraint for visual restoration, compensating for missing 

details in low-quality videos. Addressing these challenges 

requires not only restoring each frame independently but also 

maintaining temporal consistency across frames. This 

motivates the integration of auxiliary modalities like audio. 

Audio signals are naturally aligned with lip movements and 

convey high-level semantic information, making them ideal 

for compensating missing visual details, especially in low-

quality frames. For example, MFCC features capture phonetic 
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patterns that directly correspond to lip shape dynamics, 

enabling more precise restoration in speaking scenes. 

In summary, our main contributions are as follows: 

We propose a lightweight yet effective audio-guided video 

face restoration framework that combines HOG and MFCC 

features to enhance degraded video frames. 

1) We design a simplified 3D-CNN module for cross-

modal dictionary index prediction, enabling audio-aware 

semantic restoration under resource-constrained conditions. 

2)We incorporate a temporal smoothing strategy based on 

optical flow and modulation layers to improve inter-frame 

consistency and reduce jitter. 

3)Extensive experiments on the VoxCeleb2 dataset 

demonstrate that our method outperforms unimodal baselines 

in PSNR, SSIM, and LPIPS, validating the advantages of 

cross-modal fusion even with simplified architectures. 

4)However, most existing methods only utilize visual 

information, leading to unstable lip regions, especially under 

poor lighting or low resolution. Methods like BasicVSR++ 

rely heavily on optical flow, which is sensitive to noise and 

occlusions. Furthermore, they often ignore semantic cues, 

such as speech context, which are crucial for accurate lip 

movement restoration. 

2. Related Work 

Video face restoration technology aims to address the issue 

of face degradation in low-quality videos in the real world. 

This is particularly true for low-quality videos caused by 

various factors such as motion blur, compression artifacts, 

noise, and pose changes. However, video restoration not only 

requires high-fidelity detail recovery but must also ensure 

temporal consistency. This avoids inconsistencies caused by 

frame-by-frame independent restoration and restoration 

artifacts resulting from pose changes and keypoint 

localization errors. To address this challenge, several 

innovative methods have been proposed in recent years. For 

example, models such as Stable Diffusion, CodeFormer, 

RestoreFormer, and GPEN utilize deep neural networks to 

learn facial feature representations and apply them to the 

restoration of faces in low-quality videos [2,7,8]. To enhance 

consistency between frames during the restoration process, 

various temporal modeling mechanisms have been introduced. 

These include temporal attention mechanisms, feature 

propagation based on Kalman filtering, and temporal parsing-

guided codebook predictors [8]. These methods effectively 

capture temporal correlations between frames, not only 

improving the restoration quality of individual frames but also 

significantly enhancing the temporal coherence of the 

restoration results. The parsing-guided temporal coherence 

transformer PGTFormer selects the optimal face prior 

through semantic parsing guidance to generate coherent and 

seamless restoration results [3]. This method achieves 

restoration without the need for face pre-alignment through 

the temporal parsing-guided codebook predictor TPCP [3]. It 

effectively reduces restoration artifacts caused by pose 

changes and mitigates cumulative error issues during the pre-

alignment process. Additionally, the deep convolutional 

neural network (DCNN) combining multi-modal priors has 

made significant progress in repairing compression artifacts. 

This method enhances the deep learning capabilities of the 

repair process by integrating information such as 

synchronized audio signals, motion vectors, and semantic 

elements from the compressed bitstream. Another important 

contribution is the proposed temporal consistency network 

(TCN), which effectively addresses frame-to-frame jitter and 

shape flickering issues in video restoration by combining with 

alignment smoothing operations, significantly improving the 

consistency and quality of video restoration [2]. To compare 

and evaluate the performance of existing methods, 

researchers have also proposed new datasets. For example, 

the FOS and RFV-LQ datasets, the former covering a more 

diverse range of facial degradation scenarios [2,9]. The latter 

provides a standardized benchmark for low-quality video 

facial restoration, supporting the application of existing 

methods in complex scenarios. 

Typical models such as EDVR introduce deformable 

convolutions to better align multi-frame information, 

improving the spatial consistency of video restoration [10]. 

BasicVSR and its improved version BasicVSR++ utilize a 

recurrent neural network architecture combined with optical 

flow information [2,6]. Through forward and backward 

propagation, they fully exploit global dependencies in time 

series. Additionally, the KEEP model combines Kalman 

filtering for precise feature propagation [8]. MDVD achieves 

fine-grained restoration of compressed face videos via a 

multi-modal deep network [11]. These methods perform 

exceptionally well across various scenarios, laying a solid 

technical foundation for the field of video face restoration. 

Research on video face restoration technology in the multi-

modal direction has also made significant progress. The core 

idea is to integrate multi-modal information such as facial 

feature points and facial segmentation maps into the 

restoration model to improve the accuracy and effectiveness 

of restoration. The introduction of multi-modal information 

provides the model with rich facial structural information, 

enabling it to adapt more effectively to complex scenarios and 

high-quality restoration requirements. For example, the LM-

UNET model incorporates a multi-scale feature attention 

fusion module (MFAF) and a positional attention module 

(PAM) into the U-Net architecture [12]. By enhancing the 

model's ability to perceive features at different scales and key 

facial locations, it effectively improves restoration quality. 

Additionally, the introduction of the convolutional attention 

mechanism (CBAM), which combines channel attention and 

spatial attention, significantly enhances the model's ability to 

model and represent facial features [13]. 

The diversification of evaluation metrics is another area 

worthy of attention. Traditional image quality evaluation 

metrics (such as PSNR and SSIM) have been widely adopted 

[2]. However, with the advancement of technology, 

researchers have begun to focus more on metrics that can 

reflect video temporal consistency, such as TLME, MSRL, 

and FVD [3]. Additionally, to better align with human 

subjective perception, some studies have introduced 

advanced perceptual metrics such as FID, LPIPS, and MUSIQ 

[2,7,8]. The introduction of these metrics provides a crucial 

basis for more comprehensive and precise evaluation of video 

face restoration effects. 

In summary, research on multimodal video face restoration 

has broad prospects for development. With the further 

improvement of degradation modeling, temporal modeling, 

multimodal information fusion, and evaluation systems, this 

field is expected to play a more important role in practical 

applications, providing technical support for areas such as 

security monitoring, film and television production, and 

social media. This will drive the transformation of technology 

from theoretical research to practical application. Although 

research on multimodal video face restoration has made 
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significant progress, it still faces numerous challenges. First, 

the degradation factors in real-world scenarios are complex 

and diverse, and constructing a degradation model that 

closely aligns with real-world scenarios is a key issue. Second, 

facial features vary significantly across different domains 

(e.g., age, ethnicity, cultural background), and enhancing the 

model's adaptability across domains requires further research. 

Additionally, the model's robustness to occlusion and pose 

changes needs to be improved, particularly in complex 

lighting and dynamic scenarios. Nevertheless, the 

development of new technologies and models, such as 

PGTFormer, DCNN, and TCN, is driving progress in this 

field [2,3,11].  

3. Methodology 

This study proposes a video face restoration method that 

integrates audio information. The aim is to restore high-

definition and continuous face image sequences from low-

quality voice videos. The overall framework consists of four 

main modules: multimodal input preprocessing, cross-modal 

alignment and restoration, temporal consistency enhancement, 

and training and loss function design. These modules form an 

end-to-end processing workflow, from data feature extraction 

and modal fusion to final video generation. While 

maintaining a clear overall structure, the method combines 

the spatio-temporal autoencoder from PGTFormer and the 

audio-driven strategy from ATVFR [3,5]. Through some 

simplification, the method is made suitable for 

implementation under resource-constrained experimental 

conditions. 

3.1. Multimodal Input Preprocessing 

In video face restoration tasks, robust preprocessing of 

multimodal inputs is the foundation for ensuring cross-modal 

alignment. I used a preprocessing workflow that balances 

efficiency and discriminative power. The core objective is to 

extract spatio-temporal aligned feature representations from 

low-quality video frame sequences (𝒱𝒟  =

 {𝐼0𝐷 ,  𝐼1𝐷 ,   … ,  𝐼𝑘𝐷})  and synchronized audio streams (𝒜) . 

This process involves dual-channel processing of video and 

audio. 

The video pipeline first uses the HOG face detector from 

the dlib library to locate the face region in each frame [12]. 

Unlike traditional methods, this study abandons pre-

alignment operations such as affine transformations. Here, we 

refer to the non-alignment strategy of PGTFormer and 

directly crop the detected face region to a fixed size (256 × 

256) [3]. This design avoids cumulative distortion caused by 

keypoint detection errors, particularly to accommodate 

complex poses such as large-angle side profiles. The cropped 

frame sequence is converted into a tensor (𝑋𝑣 ∈
𝑅𝑇×256×256×3) , where 𝑇  denotes the temporal length. To 

enhance the model's perception of structural information, 

HOG feature maps are further extracted, where 𝐹𝐻𝑂𝐺 ∈
𝑅𝑇×64×64×31 . Its edge response characteristics can 

compensate for texture loss in low-quality images. 

The audio channel borrows the context-aware 

segmentation mechanism from ATVFR [5]. Given an audio 

stream with a sampling rate of 16 kHz, 80-dimensional 

MFCC features are extracted using the Librosa library to 

generate a Mel spectrum sequence, 𝑀 ∈ 𝑅𝐿×𝟠𝟘 , where 𝐿  is 

the total number of frames [14]. To achieve audio-video 

modality alignment, the audio is divided into context 

segments based on the video frame rate of 30 fps. Specifically, 

centered on the current video frame timestamp (𝑡𝑖), the audio 

segment within the time window ([𝑡𝑖 − δ, 𝑡𝑖 + δ])  (where 

δ = 25ms) is used to generate five consecutive sub-segments 

via a sliding window with a 10ms step size: 

𝑀𝑖 = Concat(𝑀𝑖−2, 𝑀𝑖−1, 𝑀𝑖 , 𝑀𝑖+1, 𝑀𝑖+2) ∈ 𝑅𝟝×𝟠𝟘 (1) 

This operation constructs a local temporal context, 

enhancing the audio's ability to represent lip movements. To 

improve the discriminative power of cross-modal contrastive 

learning, additional interference audio samples (𝒜′)  are 

constructed. The order of fragments (𝒜)  is randomly 

permuted (𝑀
𝑖′

) to preserve the speaker's voice but destroy 

content consistency. 

Finally, the preprocessing output is a quadruple 

{𝑋𝑣 , 𝐹𝐻𝑂𝐺 , {𝑀𝑖}𝑖=0
𝑇−1, {𝑀𝑖

′}𝑖=0
𝑇−1}. This design reduces the risk of 

geometric error accumulation through non-aligned visual 

inputs. It establishes a robust cross-modal association 

foundation by combining contextual audio segments with 

adversarial interference samples. It provides discriminative 

feature representations for subsequent repair modules. 

3.2. Cross-modal Alignment and Restoration 

The core objective of this module is to supplement visual 

information with audio features. It aims to effectively repair 

low-quality video frames. To build an end-to-end prediction 

framework that combines multimodal features, this module 

primarily consists of two parts. The first part involves 

encoding video frames using a spatio-temporal quantization 

autoencoder to obtain compact, semantically expressive 

quantized visual features. The second part introduces audio as 

conditional information to guide the prediction and 

restoration of visual codes. 

First, we input the aligned video frame sequence into the 

pre-trained TS-VQGAN encoder [3]. This module consists of 

a spatio-temporal encoder and a vector quantization layer. 

This effectively compresses the temporal information of the 

video while preserving facial structure. Let the input image of 

the 𝑖 − 𝑡ℎ frame be𝑥𝑖. After passing through the encoder, the 

quantized visual feature representation is denoted as 𝑧𝑞
(𝑖)

∈

𝑅𝑇×𝐻×𝑊×𝑑, where T represents the number of time frames, H 

and W are the spatial resolution, and d is the feature 

dimension. 

Next, to achieve cross-modal information fusion, we 

introduce MFCC features from audio as auxiliary information. 

Let the MFCC features corresponding to each video frame be 

𝑀𝑖 ∈ 𝑅𝑘 , where 𝑘  is the dimension of MFCC. We project 

these features to the same dimension as the visual features 

using a fully connected mapping function ℎ(⋅), resulting in 

ℎ(𝑀𝑖) ∈ 𝑅𝑑. We then concatenate this audio feature with the 

visual local features 𝑧𝑙
(𝑖)

 obtained via HOG: 

𝑓𝑖 = Concat (𝑧𝑙
(𝑖)

, ℎ(𝑀𝑖)) ∈ 𝑅𝑑’ (2) 

Next, we use a simplified 3D-CNN to model the 

concatenated multimodal feature sequence [13]. The 3D-

CNN has the ability to process time series, extracting joint 

features over time to predict the quantization index for the 

corresponding frame: 

𝑧̂𝑞(𝑖) = 3D-CNN(𝑓𝑖 − Δ: 𝑖 + Δ) (3) 

Where Δ is the time window size, which is used to combine 

the context information of the preceding and following frames. 

3D-CNN can model local time information well and achieve 

reasonable frame content prediction guided by audio. In our 

experiments, we set the temporal window size Δ to 2, enabling 
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the 3D-CNN to access 5 consecutive frames per prediction 

step. This configuration captures short-term temporal 

dependencies while maintaining computational efficiency. 

Larger windows (e.g., Δ = 3 or 4) showed diminished 

performance in lip motion sharpness and increased latency 

during inference. 

The 3D convolutional network used for visual-audio fusion 

consists of three sequential blocks. Each block includes a 3D 

convolution layer with kernel size 3×3×3, stride 1, and 

padding 1, followed by batch normalization and ReLU 

activation. No temporal downsampling is applied, preserving 

the temporal alignment between consecutive frames. The 

output tensor is passed through a global average pooling layer 

along spatial dimensions and then fed into a linear classifier 

that predicts the quantization index for the decoder. This 

lightweight design ensures efficient modeling of short-range 

temporal dependencies. 

Finally, the predicted quantitative index 𝑧𝑞
(𝑖)̂

 is input into 

the decoder part of TS-VQGAN for decoding, generating 

high-quality restored frames 𝑥𝑖̂ . In this process, the audio 

information not only provides constraints on lip movements, 

but also guides the consistency of facial dynamics, resulting 

in output videos with good lip synchronization and facial 

stability. 

3.3. Temporal Consistency Enhancement 

After completing cross-modal alignment and preliminary 

frame repair, directly stitching the generated video frames 

may result in visual issues such as jitter, skipping, or 

discontinuity. This is particularly noticeable in scenes where 

facial movements change rapidly or there is slight 

misalignment in audio-driven content. To enhance the 

temporal continuity and stability of the generated video, we 

opted to use a temporal consistency enhancement module. 

Combining traditional optical flow methods and smoothing 

strategies, we simplified the introduction of TFR to enhance 

temporal consistency between video frames [3]. 

First, to capture the displacement information between 

adjacent frames, we use the Farneback algorithm to calculate 

the dense optical flow [15]. The algorithm is based on the 

brightness constancy assumption, which theoretically 

assumes that the brightness of pixels between adjacent frames 

remains constant, thereby enabling inter-frame motion 

compensation through optical flow field warping operations. 

The smoothing factor γ in the weighted fusion formula 

essentially represents a Bayesian estimate of temporal 

continuity, achieved by balancing the weights of the current 

frame and the warped frame to suppress temporal 

discontinuities. Let the 𝑡 − 𝑡ℎ frame in the generated video 

be 𝑥̂𝑡 , and the subsequent frame be 𝑥̂𝑡 + 1 . Then, the 

corresponding optical flow field can be calculated as 𝐹𝑡→𝑡+1. 

By analyzing this optical flow, we can obtain the temporal 

movement trajectory of each pixel. To mitigate sudden 

changes, we use a weighted average method to fuse adjacent 

frames guided by the optical flow. The specific formula is as 

follows: 

 

𝑥̂𝑡smooth = γ ⋅ 𝑥̂𝑡 + (1 − γ) ⋅ warp(𝑥̂𝑡 + 1, 𝐹𝑡 + 1 → 𝑡) (4) 

Among them, γ ∈ [0,1]  is the smoothing factor, and the 

warp function represents the use of optical flow to deform the 

next frame backward to the current frame position. By 

adjusting the size of γ, the degree of fusion between frames 

can be controlled, thereby reducing sudden changes between 

lip movements and head movements. For optical flow-based 

smoothing, the blending factor γ was empirically set to 0.7 

after testing values in the range [0.5, 0.9]. This setting 

provides a stable trade-off between visual continuity and 

facial motion fidelity. Lower γ values  resulted in excessive 

temporal lag, while higher values  failed to sufficiently 

suppress frame-to-frame jitter in mouth regions. 

Its structure consists of a convolutional layer used to model 

continuity in the time dimension, while incorporating audio 

and optical flow information as modulation conditions. For 

the feature map 𝑥𝑑
𝑡  output by the decoder, we first compress 

its temporal dimension information, then fuse it with the 

audio features ℎ(𝑀𝑡) corresponding to the current frame and 

the optical flow representations 𝐹𝑡 − 1 → 𝑡, 𝐹𝑡+1→𝑡  of the 

previous and next frames, generating two modulation 

parameters α𝑡  and β𝑡 . Finally, the original features are 

adjusted as follows: 

 

𝑥𝑑
𝑡̃ = α𝑡 ⋅ 𝑥𝑑

𝑡 + β𝑡 (5) 

 

Among them, α𝑡 , β𝑡 ∈ 𝑅𝐶×𝐻×𝑊, representing the scaling 

and translation parameters of the channel dimension, which 

are used to emphasize areas with stable changes in the time 

series. This modulation method allows the decoder to focus 

more on the smooth changes of the facial area in the time 

dimension, thereby reducing frame-to-frame shaking caused 

by generation errors. 

4. Training and Loss Function Design 

In order to enable the model to have good restoration 

capabilities and temporal consistency, we designed a loss 

function system consisting of three main parts during training. 

These correspond to the three objectives of image content 

restoration, audio-visual alignment, and temporal smoothing. 

The Adam optimizer was used for parameter updates, with an 

initial learning rate set to 2 × 10−4. 

First, to ensure that the repaired video frames are consistent 

with the original high-quality video at the pixel level, we 

introduce the most commonly used 𝐿1 loss function as the 

basic pixel reconstruction objective. Let the repaired output 

of each frame be 𝑥𝑜 , and the corresponding original high-

quality reference frame be 𝑥ℎ . The pixel loss function is 

defined as follows: 

 
𝐿pixel = ‖𝑥𝑜 − 𝑥ℎ‖1 (6) 

 

This loss term encourages the model to generate images 

that are as close as possible to real images in terms of 

numerical values. It is the most basic and stable optimization 

objective in training. 

Secondly, to enhance cross-modal synergy between audio 

and visual data, we adopt an audio-visual alignment loss 

based on a contrastive approach. Drawing inspiration from 

the triplet loss concept in the Ali-Net component of ATVFR, 

we construct positive and negative sample pairs by comparing 

the Euclidean distance between video frame features and their 

corresponding audio features. This constrains the model to 

learn the correspondence between audio and face frames. Let 

the HOG features on the visual side be encoded as 𝑧𝑙 , the 

matching audio MFCC features be ℎ(𝑀𝑖) , and the non-

matching interference audio features be ℎ(𝑀𝑖′) . The 

alignment loss is defined as follows: 
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𝐿align = max(‖𝑧𝑙 − ℎ(𝑀𝑖)‖2 − ‖𝑧𝑙 − ℎ(𝑀𝑖 ’)‖2 + 1,  0) (7) 

 

The core purpose of this loss function is to make the 

distance between correctly matched video and audio features 

smaller, while making the distance between incorrectly 

matched features larger. This improves cross-modal 

understanding capabilities. The constant 1 after the plus sign 

is a preset margin parameter used in training to control the 

lower limit of the distance difference. This prevents the model 

from predicting that any match is similar. 

Finally, to reduce potential jitter issues in the generated 

video, we introduce a temporal smoothing loss based on 

structural similarity, encouraging consecutive frames to 

maintain structural consistency. Specifically, we calculate the 

SSIM (Structural Similarity Index Measurement) value 

between adjacent frames and use the difference as the loss 

term. Let the 𝑡 and 𝑡 + 1 frames in the generated video be 

𝑥̂𝑡  and 𝑥̂𝑡 + 1 , respectively. The smoothing loss can be 

expressed as: 

𝐿smooth = 1 − SSIM(𝑥̂𝑡, 𝑥̂𝑡 + 1) (8) 

Among them, SSIM ranges from 0 to 1, with values closer 

to 1 indicating greater similarity between two frames [16]. 

Therefore, a smaller value of 1 − SSIM  indicates better 

consistency. This term effectively reduces sudden changes in 

content between frames and improves the stability of faces 

over time. 

Combining the above three objectives, our final total loss 

function is as follows: 
𝐿total = λ1𝐿pixel + λ2𝐿align + λ3𝐿smooth (9) 

Among them, λ1, λ2, 𝑎𝑛𝑑 λ3  are the weights of the three 

loss terms, respectively. In the experiment, we set λ1 = 1.0, 

λ2 = 0.5 ,and λ3 = 0.2  to emphasize pixel accuracy while 

also considering cross-modal alignment and temporal 

consistency. The loss weights were chosen based on grid 

search across the training set.  λ1 = 1.0  ensures pixel-level 

accuracy as a primary goal. λ2 = 0.5  reflects the auxiliary 

role of audio alignment, and  λ3 = 0.2  serves to enhance 

inter-frame coherence without over-smoothing. These values 

provided the best trade-off in our validation. In the early 

stages of training, the model primarily relies on pixel loss for 

convergence. As the model's generation performance 

gradually improves, alignment loss and smoothing loss 

increasingly play a more significant role. 

Through the above joint optimization strategy, the model 

can better align audio semantics while ensuring image quality, 

and output high-quality, coherent facial video sequences. 

5. Experiments 

5.1. Main Experiment 

Our experiments were implemented using the PyTorch 

1.13.0 framework with Python 3.8. The models were trained 

on a single NVIDIA V100 GPU with 32GB memory under 

CUDA 11.7. We used the Adam optimizer with an initial 

learning rate of 2 × 10−4, and set the batch size to 8. Training 

converged within 200 epochs. 

To validate the effectiveness of this method, we conducted 

quantitative and qualitative experimental analyses on the 

VoxCeleb2 dataset [17]. VoxCeleb2 is a publicly available 

dataset containing a large-scale collection of multi-speaker 

speech videos. It is widely used for speech-driven facial 

analysis tasks. With diverse facial poses, lighting conditions, 

and speech content, it serves as an ideal benchmark for 

evaluating cross-modal video restoration methods. 

In the experiments, we generated low-quality versions of 

the original high-definition videos by downsampling, adding 

compression artifacts, and simulating frame loss, which were 

used as input for the models. Meanwhile, the audio tracks 

were retained to support multimodal fusion. All models were 

trained on the same data preprocessing workflow and training 

set, and evaluated on a unified test set. 

We selected four evaluation metrics to assess both visual 

quality and temporal consistency: PSNR, SSIM, LPIPS, and 

TLME. While PSNR and SSIM measure reconstruction 

accuracy and structural similarity, LPIPS reflects perceptual 

similarity in feature space. TLME, on the other hand, 

quantifies the learned motion error across frames and reflects 

the smoothness and temporal fidelity of the generated video. 

To demonstrate the advantages of the proposed method, we 

compare it with two representative unimodal baseline models: 

BasicVSR++ and VQFR [6,18]. BasicVSR++ is a classic 

video frame interpolation and enhancement method. It relies 

solely on visual information for restoration. On the other hand, 

VQFR is a single-frame image restoration method based on 

VQGAN. It lacks spatio-temporal modeling and audio-guided 

capabilities. Our multimodal model introduces audio-driven 

restoration strategies and spatio-temporal consistency 

modules while maintaining structural simplicity. 

To ensure experimental reproducibility, we established a 

fixed set of configurations across all components of the 

training pipeline. A random seed of 42 was consistently 

applied to all data shuffling operations, model weight 

initializations, and audio segment permutations to ensure 

consistent behavior across training runs. The VoxCeleb2 

dataset was preprocessed with a fixed train-test split, where 

90% of the speakers were assigned to the training set and the 

remaining 10% to the test set. During training, the same input 

frame resolutions (256×256), MFCC windowing (25ms 

window, 10ms stride), and batch size (8) were used across all 

experiments. The TS-VQGAN encoder and decoder were 

kept frozen during all training stages to eliminate randomness 

from pre-trained parameter updates. In addition, deterministic 

behavior was enforced in all numerical computations 

involving optical flow and feature extraction. This consistent 

setup ensures that our observed improvements are statistically 

stable and not dependent on initialization noise or stochastic 

behavior in multimodal alignment. 

Table 1 and Table 2 show the average metric comparison 

results of different models on the VoxCeleb2 test set: 

Table 1. PSNR and SSIM comparison 

Method PSNR↑ SSIM↑ 

BasicVSR++ 25.62±0.09 0.781±0.006 

VQFR 25.89±0.08 0.794±0.005 

Ours 26.35±0.06 0.811±0.005 

Table 2. LPIPS and TLME comparison 

Method LPIPS↓ TLME↓ 

BasicVSR++ 0.285±0.004 0.142±0.004 

VQFR 0.261±0.003 0.165±0.005 

Ours 0.239±0.003 0.118±0.003 

As can be seen from the table, this method outperforms the 

single-modal method in all three metrics. Specifically, it 

improves PSNR by approximately 0.7 dB compared to 

BasicVSR++, indicating more accurate overall image 

restoration. It also improves SSIM by 0.03, indicating more 
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complete structural preservation. In terms of the LPIPS metric, 

this method also outperforms VQFR, indicating that the 

generated images are more perceptually similar to real faces. 

The TLME results also confirm that our method achieves 

more temporally coherent outputs, with reduced frame-to-

frame motion deviation compared to unimodal baselines. This 

improvement is attributed to the audio-guided motion 

constraints and optical flow smoothing components in our 

model. The low standard deviations indicate that the 

performance gains are consistent across runs. Despite the 

seemingly marginal PSNR gain, the improvements in LPIPS 

and TLME suggest better perceptual quality and temporal 

coherence, which are crucial for real-scene video face 

restoration.  

Additionally, in terms of visual continuity, we observed 

that the videos generated by the proposed method exhibit 

more natural transitions in facial movements. Inter-frame 

jumps are reduced, particularly in areas such as lip-

synchronization and head movement, where stability is 

enhanced. This is primarily attributed to the effective 

collaboration between the temporal fidelity regulator and the 

optical flow smoothing mechanism. 

 

Figure 1. Example of a figure caption. (From left to right, these are 
Data, Ours, VQFR, BasicVSR++) 

Figure 1 shows visual comparisons of restored video 

frames across methods. While VQFR tends to generate over-

smoothed facial regions and BasicVSR++ sometimes 

introduces motion jitter, our method preserves sharp facial 

contours and yields more consistent mouth shapes across 

frames. These advantages are particularly evident in speaking 

scenes under motion blur or compression artifacts. The 

improvement can be attributed to the audio-guided temporal 

cues and flow-based smoothing used in our framework. 

5.2. Ablation Experiment 

To validate the contribution of each component in our 

framework, we conduct ablation experiments by 

systematically removing or modifying individual modules 

while keeping all other settings unchanged. The goal is to 

isolate the impact of the multimodal fusion mechanism, 

temporal smoothing strategy, and temporal feature modeling. 

We consider three ablated variants of our full model: 

1)w/o Audio Guidance: Removes MFCC-based audio 

features from the fusion pipeline and relies solely on visual 

HOG inputs. 

2)w/o Temporal Smoothing: Disables the optical flow-

based smoothing and modulation mechanism; video frames 

are processed independently without temporal refinement. 

3)w/ 2D-CNN (no temporal): Replaces the 3D 

convolutional network with a standard 2D-CNN that lacks 

temporal modeling capabilities. 

Table 3 and Table 4 summarize the results of each 

configuration. The full model achieves the best performance 

across all four metrics (PSNR, SSIM, LPIPS, and TLME), 

indicating superior reconstruction quality and temporal 

coherence. Removing audio guidance leads to degraded 

perceptual quality and higher motion jitter, highlighting the 

importance of semantic alignment from speech features. 

Removing temporal smoothing results in slightly lower PSNR 

and a marked increase in TLME, showing its role in 

stabilizing frame transitions. The 2D-CNN variant performs 

the worst across all metrics, confirming that temporal 

modeling is essential for realistic video face restoration. 

Table 3. Ablation results (PSNR and SSIM). 

Variant PSNR↑ SSIM↑ 

Full Model 26.35 0.811 

w/o Audio Guidance 25.81 0.792 

w/o Temporal Smoothing 26.02 0.679 

w/ 2D-CNN (no temporal) 25.54 0.612 

Table 4. Ablation results (LPIPS and TLME). 

Variant LPIPS↓ TLME↓ 

Full Model 0.239 0.118 

w/o Audio Guidance 0.264 0.145 

w/o Temporal Smoothing 0.248 0.196 

w/ 2D-CNN (no temporal) 0.316 0.278 

5.3. Expand Experiment 

To further investigate the effectiveness of key design 

decisions within our audio-guided framework, we conducted 

additional ablation experiments focused on the MFCC 

segmentation length and the structured interference sample 

mechanism used in the contrastive loss. Both components 

play a central role in our multimodal alignment strategy. 

For the MFCC segmentation, we varied the number of 

consecutive MFCC frames used as input to the cross-modal 

index prediction module. Specifically, we tested 3-frame, 5-

frame (default), and 7-frame segments, while keeping the 

MFCC window size (25 ms) and stride (10 ms) fixed. As 

shown in Table III, using only 3 frames leads to insufficient 

temporal context and thus reduces the model’s ability to 

resolve subtle phoneme transitions, resulting in higher LPIPS 

and TLME values. On the other hand, a 7-frame segment 

introduces excessive temporal span, which dilutes alignment 

precision and introduces noise from irrelevant phonetic 

features. The 5-frame setting achieves the best balance 

between temporal expressiveness and localized alignment, 

confirming the empirical rationale for our design. 

The results of these extended ablation studies are presented 

in Table 5. 

Table 5. Expand results (LPIPS and TLME). 

Setting LPIPS↓ TLME↓ 

Full Model 0.239 0.118 

MFCC Segment = 3 0.251 0.174 

MFCC Segment = 7 0.244 0.132 

w/o Interference M 0.248 0.156 

In addition, we evaluated the impact of the interference 

sample mechanism used in our contrastive loss formulation. 

In our full model, structured negative pairs are sampled from 

MFCC segments of the same batch but from different 

identities, forming semantically plausible but incorrect 

associations. To assess the utility of this design, we replaced 

𝑀𝑡’  with uniformly random negative samples drawn from 

unrelated videos. This variant leads to a noticeable 

degradation in perceptual quality and inter-frame consistency, 

as reflected by increased LPIPS and TLME scores. 

In summary, the experimental results demonstrate that our 
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method outperforms traditional single-modal methods across 

multiple evaluation metrics. This validates the feasibility and 

advantages of cross-modal fusion strategies in speech-driven 

video face restoration. 

6. Conclusion 

In this study, we propose a simplified and effective audio-

driven video face restoration method. By combining visual 

HOG features with audio MFCC cues and utilizing a 3D-

CNN to predict visual dictionary indices, our model leverages 

multimodal information to guide the reconstruction process. 

With the help of pre-trained TS-VQGAN and a lightweight 

temporal consistency module, we are able to generate high-

quality and smooth face videos from degraded inputs. 

Experiments on the VoxCeleb2 dataset validate that our 

method outperforms unimodal approaches, particularly in 

terms of structural similarity and perceptual quality. Despite 

the absence of complex architectures in our model, the results 

demonstrate that the reasonable integration of cross-modal 

features can significantly enhance video face restoration 

quality. 

7. Future Work 

The current limitations of our research lie in the fact that 

both training and evaluation rely solely on the VoxCeleb2 

dataset. While VoxCeleb2 encompasses a wide range of facial 

features and speech conditions, it may not fully represent the 

variability found in other domains. In future research, we plan 

to expand the evaluation scope to include datasets such as 

VFHQ and CelebV-HQ to validate the model's cross-domain 

generalization capabilities. Additionally, domain adaptation 

strategies can be explored to further enhance the model's 

robustness in unseen scenarios. A current limitation of our 

evaluation is the lack of comparison against recent 

multimodal baselines due to the high training cost and 

engineering complexity. Future work will focus on integrating 

direct comparisons with models such as ATVFR and 

PGTFormer to more comprehensively evaluate cross-modal 

performance under varying architectural settings. In future 

research, we plan to explore more robust temporal modeling 

and more efficient fusion mechanisms to further improve 

performance under limited computational resources. 
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