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Abstract: Although the HQ-SAM model has achieved some results in improving the accuracy of fuzzy boundary segmentation,
it is still difficult to achieve accurate segmentation in medical image processing, especially in the face of small targets such as
breast cancer microcalcification clusters, in addition, high labor costs make Prompt operation cumbersome, in order to solve
these problems. A novel segmentation method of breast cancer microcalcification cluster based on SAM was proposed. The
method first uses Yolov8 neural network model to accurately obtain the lesion region, then uses MLSAM model to perform more
detailed semantic segmentation of the lesion region, and finally realizes semi-automatic annotation function, greatly reducing
the cost and complexity of manual participation. The experimental results show that compared with the HQ-SAM model, the
new method has significantly improved the segmentation performance, and the dice similarity coefficient reaches 81.78%.

KeyWOI’dS: Medical image; Breast cancer; Object detection; Semantic segmentation; Semiautomatic annotation.

1. Introduction 2. Related work

Breast cancer remains the most prevalent malignancy
among women globally, with early detection being crucial for
reducing its high mortality rate [1]. Despite advances in

2.1. Medical image segmentation based on
deep learning

screening technologies and therapeutic approaches, the FFDM (Full-Field Digital Mammography) is a critical tool
disease's high incidence and pathological complexity for breast cancer screening, and deep learning models have
continue to pose significant clinical challenges [2]. Full-field been widely applied to the automated segmentation of masses
digital mammography (FFDM), as a mainstream non- and microcalcifications in breast images. Models such as U-
invasive screening modality, employs low-dose radiation to Net and Mask R-CNN have demonstrated excellent
generate high-resolution breast tissue images, proving performance in breast image segmentation tasks, especially in
particularly effective for detecting early-stage lesions. The images with ambiguous lesion boundaries and irregular
growing demand for breast cancer screening has propelled shapes, significantly improving segmentation accuracy. Punn
automated image analysis into a research focus for breast et al. [8] proposed the RCA-IUnet model, which integrates
mass detection [3]. residual connections, cross-spatial attention mechanisms, and

Traditional breast cancer segmentation methodologies Inception modules to enhance the segmentation ability of
exhibit notable limitations in clinical applications. These tumors in breast ultrasound images. This architecture is
approaches demonstrate high sensitivity to image contrast particularly adept at handling complex and noisy medical
variations, often failing to accurately identify lesions with images, significantly improving segmentation precision while
subtle tissue differentiation [4]. Moreover, their performance maintaining model efficiency, with notable improvements in
significantly degrades when handling irregularly shaped detail capture and feature extraction. Ning et al. [9]
lesions with indistinct boundaries, particularly for small introduced an improved model named SMU-net, which
early-stage tumors that lack distinctive morphological incorporates  saliency-guided and  shape-awareness
features [5]. To address these challenges, deep learning mechanisms. By leveraging the saliency information from
techniques have emerged as promising solutions in medical significant regions in the image, the model enhances
image segmentation. While convolutional neural networks segmentation accuracy and improves the recognition of
(CNNs) have achieved remarkable progress in this domain, complex shapes and blurred boundaries, thereby better
two critical limitations persist: 1) Progressive information capturing lesion morphological features and exhibiting
loss during convolution and pooling operations compromises outstanding segmentation performance in complex and low-
edge detection accuracy for blurred lesion boundaries; 2) contrast medical images. Dar et al. [10] proposed the
Limited generalization capability across diverse clinical EfficientU-Net model, which optimizes the network
scenarios [6]. Recent advancements introduce the Segment architecture to improve segmentation efficiency and accuracy,
Anything Model (SAM), which demonstrates exceptional particularly excelling in handling complex lesions in
zero-shot generalization capabilities and shows substantial ultrasound images. This model combines lightweight design,
potential for medical image segmentation applications [7]. reducing computational resources while significantly

enhancing both segmentation and classification performance,
thereby contributing to the automation of breast cancer
diagnosis. Despite the significant accuracy improvements of
U-Net in breast tumor and lesion segmentation, its
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adaptability remains limited when dealing with complex
shapes or blurred boundaries. In particular, segmentation
performance suffers when handling lesions with irregular
shapes. To address these limitations, some researchers have
focused on using Mask R-CNN and its variants, incorporating
multi-scale feature extraction and attention mechanisms to
further improve segmentation accuracy and robustness, thus
better handling complex segmentation tasks. Shen et al. [11]
proposed an instance segmentation method that combines
attention mechanisms with Mask R-CNN. By integrating
attention mechanisms, this model efficiently captures
important features, thereby enhancing object recognition and
segmentation performance in complex scenarios. Li et al. [12]
proposed the EMDFNet network, which enhances Mask R-
CNN's detection performance through multi-scale feature
extraction. This network provides more accurate detection
and segmentation of multiple targets in complex scenarios,
especially improving model precision and robustness when
dealing with images containing multiple objects and intricate
backgrounds.

2.2. Medical image segmentation based on
deep learning

U-Net, Mask R-CNN, and other mainstream neural
network models are typically optimized for specific datasets,
but such adjustments often limit their generalization
capability. When these models are applied to contexts outside
the training data, their performance may deteriorate, leading
to restricted applicability. Meta introduced SAM, a universal
large model capable of one-click segmentation of arbitrary
objects in photos or videos, which enhances the model's
adaptability and practicality across various scenarios. Some
researchers have tested SAM's foundational model on
medical images to explore its potential applications in the
medical field, aiming to validate its performance in handling
complex medical images and assess its suitability and
accuracy for medical image segmentation. Mazurowski et al.
[13] investigated SAM's application in medical image
analysis, experimentally evaluating its performance with
medical image data, analyzing the model’s applicability and
limitations, and confirming SAM’s potential in medical
image segmentation. They also proposed optimization
directions to improve its effectiveness in the healthcare
domain. Zhang et al. [14] systematically assessed the
performance of the SAM model on 12 public medical image
datasets, covering multiple organs and different imaging
modalities. The study found that SAM underperformed in
handling medical images with weak boundaries and low

contrast, but segmentation results could be significantly
improved by adding manual prompts (e.g., bounding boxes).
Zhang et al. [15] proposed SAMed, which was specifically
optimized for medical image segmentation. It incorporated a
low-rank approximation (LoRA) fine-tuning strategy,
enabling SAMed to efficiently process medical images.
Training strategies such as warmup and the AdamW
optimizer significantly accelerated model convergence and
improved segmentation accuracy, though boundary handling
remained somewhat imprecise. Ke et al. [16] introduced HQ-
SAM, which, while maintaining the original SAM model’s
zero-shot segmentation ability, significantly improved
segmentation precision through minimal adjustments. By
incorporating high-quality output tokens (HQ-Output Token)
and a global-local feature fusion mechanism, HQ-SAM
produced more refined segmentation boundaries and
performed well with complex object structures. However, this
model still relies on manual prompts, and its application in
medical image segmentation has limitations.

To overcome the limitations of the HQ-SAM model, this
paper proposes a new model called Yolo-MLSAM, which
combines the improved Yolov8 neural network with the
Multi-Level SAM (MLSAM) segmentation model. The main
contributions are as follows:

1) Introduction of attention mechanisms: The CBAM
attention mechanism is added to the Yolov8 neural network to
enhance the recognition of breast cancer microcalcification
cluster lesion areas.

2) Elimination of manual prompt dependence: By using the
region boxes obtained from the Yolov8 neural network, the
brightest points are extracted and used as point prompts for
the MLSAM model input.

3)Multi-level feature fusion: Features from the shallow,
mid, and deep layers of Vision Transformer (ViT) are
combined to fuse different levels of feature information,
capturing both low-level details and high-level semantic
features simultaneously.

3. Yolo-MLSAM-based Segmentation
Method for Breast Cancer
Microcalcification Clusters

The novel segmentation method for breast cancer
microcalcification clusters proposed in this study, based on
Yolo-MLSAM, primarily consists of two components: the
region proposal network based on Yolov8 and the image
segmentation based on the MLSAM model. The overall
framework of the method is illustrated in Figure 1.
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Fig. 1 Flowchart of Yolo-MLSAM breast cancer microcalcification cluster segmentation method

3.1. Regional candidate network based on
CBAM-Yolov8

To reduce the manual annotation cost of constructing
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Prompt engineering, Yolov8 is utilized for medical diagnostic
image processing to delineate specific lesion areas and extract
the brightest point from each lesion region as input for the
MLSAM model. This approach aims to address two main



issues: first, to accurately identify and locate lesion regions in
medical images, thereby improving diagnostic accuracy;
second, to extract the highest brightness point from each
lesion region and use these points as input for the MLSAM
model, thus eliminating the reliance on manual prompts and
further enhancing overall segmentation efficiency.

To improve Yolov8's sensitivity to small target objects, the

Mosaic data augmentation method [17,18] is introduced. The
FFDM suspicious region localization algorithm based on
Yolov8 utilizes FFDM data to construct the dataset and
performs lesion detection through the Yolov8 network. The
Yolov8 network employs convolutional layers, pooling layers,
etc., to extract data features, and improves the network's
localization ability through the construction of CIOU loss.
The specific implementation process is as follows:
Construct the FFDM dataset. Let the total number of patients
be N, with each patient containing four FFDM images taken
at different positions. The sample image dataset and label
dataset are constructed with individual patients as the smallest
unit.
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Here, m represents the image data, and 1 denotes the
corresponding label data.
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Here, IoU represents the intersection over union (IoU)
between the predicted box and the ground truth box, a
controls the impact of the distance loss on the overall loss, d
denotes the normalized distance between the boundary box
centers, [} is the angle weight coefficient, and v represents the
angular loss.

Inserting CBAM after two feature extraction layers can
enhance the feature representation ability in the early stages
of the network. By adding CBAM at these positions, the
network can more effectively focus on and strengthen key
features, while filtering out irrelevant information. This helps
improve the model's precision in target extraction, especially
when dealing with complex backgrounds or multi-scale
targets. The specific process is illustrated in Figure 2.
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Fig. 2 CBAM-Yolov8 network structure

CBAM consists of two modules: the channel attention
module and the spatial attention module [19]. The channel
attention module assigns different weights to the feature maps
of each channel by focusing on the inter-channel attention
regions, enhancing the relevant features while suppressing the
irrelevant ones. The spatial attention module, on the other
hand, computes spatial attention weights by focusing on the
important regions within a single-channel image,
emphasizing critical spatial locations. By integrating these
two modules, CBAM significantly improves the model’s
ability to perceive microcalcification clusters in terms of both
channel and spatial positions. The detailed description of
CBAM is as follows:

1) Channel Attention: The input feature map is F €
RCxHxW, where C represents the number of channels, and H
and W are the height and width, respectively. First, global
average pooling and global maximum pooling are performed.
The results of both pooling operations are then fed into a
shared Multi-Layer Perceptron (MLP). After applying the
ReLU activation function followed by the Sigmoid activation
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function, the attention weights for each channel are obtained.
The specific formula is as follows:

F1,,, = AvgpoolF) (4)
F1,, =Maxpool(F) (5)
W, (F)=o(MLP(FL,, )+ MLP(FL,)) (6

Here, Flavg and Flmax represent the results of the max
pooling and average pooling operations, respectively, while ¢
denotes the activation function.

2) Spatial Attention: First, global max pooling and average
pooling are applied along the channel dimension of the input
feature map. The results of these two pooling operations are
then concatenated along the channel axis. A convolution
operation is subsequently performed, followed by an
activation function to generate the spatial attention weights.
Finally, the spatial attention weights are multiplied by the
input feature map, enhancing or suppressing the spatial
locations within the feature map.

F2,,, = AvgpoolF) 7



F2,.. =Maxpool(F)
M (F)=o(f " (F2,,;
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Here, F2avg and F2max represent the results of the average
pooling and max pooling operations, respectively, while f7x7
denotes a 7x7 convolution.

3) CBAM Attention Feature Map: The channel attention
feature map is multiplied by the spatial attention map, refining
the feature representation. This allows the model to focus on
the most informative features in both dimensions, thereby
enhancing the ability of Yolov8 to detect microcalcification
clusters in breast cancer. The final output of CBAM is:

Fe =W.(F)-F (10)

Fou =M (Fc)-Fe (1)

To extract the brightest point in each lesion region, we first
initialize the maximum brightness value Imax=—co and its
corresponding coordinates (xmax,ymax). Then, we iterate
through all the pixels in the region, and whenever a pixel
value I(x,y)>Imax is found, we update Imax and the
coordinates (xmax,ymax). The point with the highest

brightness, (xmax,ymax), will be extracted and used as the
key point for input into MLSAM.

3.2. Image segmentation network based on
MLSAM model

Although the HQ-SAM (High-Quality Segment Anything
Model) is capable of handling complex samples in medical
image segmentation, it still faces challenges such as boundary
errors and missed detections in certain cases. To address this
issue, this paper proposes an improved segmentation
algorithm, MLSAM. This algorithm enhances the model’s
ability to capture local details and integrate global
information by introducing multi-scale fusion of shallow,
middle, and deep features, thereby improving segmentation
accuracy. As shown in Figure 3.

The key improvement in MLSAM lies in the utilization of
the multi-layer outputs from the ViT model, combined with
the results of the mask decoder for global feature fusion [20].
Specifically, the model extracts multi-scale features from
different network layers: shallow features from the 6th output
block of the ViT, middle features from the 12th output block,
and deep features from the 24th output block. These features
play distinct roles at different levels: shallow features
primarily preserve fine-grained local information, such as
edges and textures; middle features capture local details while
beginning to integrate global contextual information; and
deep features mainly represent global semantic information
and macro-structural patterns [21].
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Fig. 3 Segmentation flow chart based on MLSAM model

Moreover, MLSAM further strengthens the capture and
processing of middle-level features through the multi-layer
self-attention mechanism in the ViT framework. Compared to
low-level features, middle-level features are better suited for
segmenting complex shapes, irregular boundaries, or blurred
targets, improving segmentation accuracy. The multi-scale
feature extraction and fusion strategy not only enhances the
precision of the segmentation task but also strengthens the
model’s ability to understand objects at different scales.

To effectively fuse these multi-scale features, shallow,
middle, and deep features are first upsampled to a spatial size
of 256x256 through transposed convolution to ensure
alignment in spatial dimensions. Then, these multi-scale
features are globally fused with the output mask from the
mask decoder. The mask decoder generates high-resolution
masks through the image encoder, providing spatial
information for the target regions, further enhancing
segmentation precision.

Ultimately, through the global fusion involving shallow,
middle, and deep features, along with the mask generated by
the mask decoder, MLSAM generates high-quality features.
These features combine rich local details and global semantic
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information,  significantly  improving the model’s

segmentation accuracy and robustness.

3.3. Semi-automatic annotation based on Yolo-
MLSAM model

To improve the efficiency of data annotation and model
training in medical image segmentation tasks, and to reduce
the high human and time costs associated with traditional data
annotation workflows [22, 23], we introduce a semi-
automatic annotation method based on Yolo-MLSAM. This
method combines annotated and unannotated data to enhance
model performance, improve overall research efficiency, and
reduce annotation costs. The entire semi-automatic
annotation process can be divided into three stages:

1)Assisted Manual Stage: The Yolo-MLSAM model is
used to perform initial analysis and processing of FFDM
images, detecting the breast cancer microcalcification clusters
and generating preliminary annotation masks. The
segmentation results are typically presented as masks, where
a pixel value of "1" indicates pixels that need to be processed,
and "0" represents non-lesion background areas. By analyzing



these masks, boundary pixels with irregular shapes are
identified, and their X-axis and Y-axis coordinates are
extracted. The bounding box of the shape is determined using
a max-min value updating mechanism to optimize the shape
boundaries and improve mask accuracy. The method for
expressing the coordinates of all non-zero pixels in the mask
is as follows:

s ={(x, y)mask[y]x]=1} (12)

Here, S represents a set containing a group of two-
dimensional coordinates (x,y), where (X,y) denotes a two-
dimensional coordinate point, and mask[y][x] represents the
pixel value at the y row and x column of the mask.

2) Semi-Automatic Stage: To enhance the model's
performance in FFDM image annotation, a pre-trained model
is deployed to automate the initial annotation process. The
results generated in this stage undergo review by medical
experts, which not only helps correct potential misjudgments
made by the model but also focuses on specific lesion areas
that the model may have failed to accurately segment. This
step significantly improves the accuracy and completeness of
the annotations and strengthens the identification of lesion
features. The data, after being carefully corrected by experts,
is fed back into the model for subsequent training iterations,
with the aim of enhancing the model's prediction capabilities
and reducing reliance on expert intervention. Through this
iterative optimization process, the precision and efficiency of
semi-automatic annotation are significantly improved,
ultimately enhancing the model's ability to autonomously
learn breast cancer image features.

3) Fully Automatic Stage: In the final stage, Yolo-MLSAM
is capable of independently generating masks for the images
in the dataset without any manual input. Additionally, it can
handle complex segmentation tasks, significantly reducing
the cost of manual annotation.

4. Experimental results
4.1. Experimental data

The breast mammography X-ray segmentation dataset used
in this study is from the First Affiliated Hospital of Zhejiang
University. The dataset contains 4,000 two-dimensional
FFDM images from 1,000 patients, each annotated with
corresponding segmentation masks. Each image was
reviewed by two different annotators in two rounds to ensure
proper de-identification. Any discrepancies found were
arbitrated by a third radiologist to resolve the issues [24].

4.2. Evaluation indicators

The purpose of this paper is to accurately segment the
segmentation of the relevant medical image data, so the true
positive rate (TPR), false positive rate (FPR), precision (Pr),
F1 score, Dice index (Dice), Accuracy (ACC),Mean Average

Precision @0.5(mAp@0.5),and mAP@0.5:0.95 are used as
the evaluation indicators. The expression of each evaluation
index is as follows:

TP

R=—— (13)

TP +FN
PR P "

TN +FP

TP
Pr=———— (15)
TP +FP
F1—2x Prx Recall (16)
Pr+ Recall
. 2TP

Dice = (17)

2TP + FP + FN
ACC — TP +TN )

TP +TN + FP + FN
N
MAP@0.5= %Z AP(loU >05) (19
i=1

1 0.95

MAP@0.5:0.95=— > mMAR,,  (20)
loU=0.5

Here, true-positive (TP) refers to the count of samples with
correctly identified microcalcification clusters, while false-
negative (FN) represents the count of samples where
microcalcification clusters were incorrectly missed. Similarly,
false-positive (FP) denotes the count of samples wrongly
identified as having microcalcification clusters. The number
of true-negatives (TN) signifies the samples that were
correctly determined as lacking microcalcification clusters, C
is the number of classes and APi is the average precision of
the i class, APi(IoU) is the AP of category i in the specified
IoU threshold.

4.3. Model performance evaluation

The model performance evaluation is divided into three
parts: evaluation of the region proposal network based on
CBAM-Yolov8, evaluation of the performance of the
MLSAM model, and evaluation of the performance of the
Yolo-MLSAM model.

4.3.1. Regional candidate network performance
evaluation based on CBAM-Yolov8

To wvalidate the effectiveness of the CBAM attention
mechanism, a comparison was made between the Yolov8
model and its variants with the addition of CBAM, SE, and
ECA attention mechanisms. The experimental results are
shown in Table 1, with accuracy, true positive rate (TPR), F1
score, mAP@0.5, and mAP@0.5:0.95 as the measurement
metrics.

Table 1. Experimental results of attention mechanism comparison

Attention mechanism
Pr% TPR% F1% mAP@0.5% mAP@0.5:0.95%
CBAM SE ECA
X X X 86.76 84.64 86.35 88.51 56.43
N X X 88.14 85.42 87.46 89.32 57.62
X N X 87.43 84.86 86.68 88.46 56.35
X X N 86.53 84.25 86.24 87.75 55.69

According to the results in Table 1, compared to the
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original Yolov8 algorithm, the addition of the CBAM


mailto:Precision@0.5,and

attention mechanism improved the algorithm's accuracy by
1.38%, true positive rate by 0.78%, F1 score by 1.11%,
mAP@0.5 by 0.81%, and mAP@0.5:0.95 by 1.19%. After
adding the SE attention mechanism, all performance metrics
showed some improvement, but the gains were not as
significant as those achieved by CBAM. In contrast, after
adding the ECA attention mechanism, the accuracy decreased
by 0.23%, true positive rate by 0.39%, F1 score by 0.11%,
mAP@0.5 by 0.76%, and mAP@0.5:0.95 by 0.74%.

Overall, the results in Table 1 suggest that the ECA
attention mechanism not only leads to a decrease in
performance but also increases the computational burden of
the model. On the other hand, both the CBAM and SE
attention mechanisms resulted in performance improvements,

with CBAM showing the most significant enhancement,
primarily due to its stronger modular design and feature
enhancement capability.

For FFDM images, the CBAM-Yolov8 network was
employed for object detection, with true positive rate (TPR),
false positive rate (FPR), accuracy, Dice coefficient, and
precision as evaluation metrics. In the experiments,
performance was compared across five confidence thresholds
ranging from 0.1 to 0.5. During training, the batch size was
set to 8, the number of epochs to 150, and the initial learning
rate was set to 0.01, with a cosine annealing method used to
adjust the learning rate. The specific experimental results are
presented in Table 2.

Table 2. Results of the confidence threshold comparison experiment

Thresholdvalue TPR% FPR% ACC% Pr% Dice%
0.1 97.86 49.13 67.53 50.54 65.42
0.2 90.63 14.30 87.35 85.56 83.52
0.3 65.23 11.26 80.83 74.37 78.22
0.4 49.97 8.13 78.66 76.56 63.55
0.5 30.21 7.41 74.51 68.23 44.32

Based on the results presented in Table 2, it can be observed
that when the confidence threshold is set to 0.1, the network
achieves a high true positive rate of 97.86%. However, this
high true positive rate is accompanied by a significant
increase in the false positive rate, while both accuracy and
Dice coefficient are relatively low. In this case, it is necessary
to balance the trade-off between different metrics to
determine the optimal model parameter settings. Ultimately,
a confidence threshold of 0.2 was selected. Although the true
positive rate decreases slightly under this setting, the false
positive rate is substantially reduced, indicating that the
model’s predictions are more reliable. Specifically, by
adjusting the confidence threshold, a balance between true
positive and false positive rates can be achieved, leading to
more accurate and dependable results. This is not only crucial
for improving the performance of the current model but also

provides valuable guidance for achieving high-precision
segmentation in subsequent SAM models. By optimizing
model parameters, computer-aided diagnostic techniques can
be applied more effectively, enhancing early detection and
diagnostic efficiency for breast diseases, providing better
medical services to patients, and offering more effective
support and assistance for patients' health and healthcare
needs.

4.3.2. Performance evaluation based on MLSAM model

The MLSAM model enhances the image's local details by
adding an additional intermediate feature layer. To evaluate
the effectiveness of this modification, an ablation study was
conducted by comparing different model configurations, as
shown in Table 3.

Table 3. Ablation studies of MLSAM feature sources

Model ﬁ?s li(())ll)lal D;zgt?li:?%k Early VI{Z?;{;’SW Final mloU% mBIoU%
Layer Layer Layer
HQ-SAM Y \ v x S 79.63 71.56
x N x x x 77.12 69.34
N N x x x 77.84 70.86
MLSAM y y x x \ 78.82 7123
x V V \ \ 79.64 71.13
V y \ \ \ 81.12 71.89

As shown in Table 3, the MLSAM model outperforms the
HQ-SAM model in both mloU and mBloU metrics.
Specifically, MLSAM achieved an mloU of 81.12%, which
represents a slight improvement over HQ-SAM's 79.63%.
Additionally, in terms of mBloU, MLSAM's highest value
reached 71.89%, surpassing HQ-SAM's 71.56%. This
demonstrates that the MLSAM model effectively utilizes
global fusion and information from different feature layers,
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leading to higher segmentation accuracy and improved
boundary handling. Notably, it excels in integrating global
context information and generating precise masks.

The image encoder used in MLSAM has three different
scale versions: Vit-b, Vit-l, and Vit-h, with Vit-b being the
smallest model and Vit-h being the largest. To determine the
most suitable image encoder, the following experiment was
conducted, and the results are shown in Table 4.



Table 4. Image encoder type performance comparison experiment

Image encoder type Model configuration TPR% FPR% ACC% Dice%
Vit-b 68.35 23.86 73.56 58.62
Vit-1 HQ-SAM 70.52 20.67 74.34 68.51
Vit-h 73.23 18.62 75.12 74.35
Vit-b 71.34 2431 73.42 60.21
Vit-1 MLSAM 73.62 23.53 74.35 70.54
Vit-h 76.34 21.35 77.58 76.34

As shown in the table above, larger model sizes achieve
better fine-grained results in downstream tasks. This finding
indicates a positive correlation between the model's scale and
its processing capability, where larger models tend to capture
and handle details more effectively, leading to improved
overall performance. Therefore, in applications requiring high
precision, selecting a larger-scale model may be an effective
strategy to enhance the quality of the results.

4.3.3. Performance evaluation based on Yolo-MLSAM

model
In the performance evaluation of the Yolo-MLSAM model,

the dataset was randomly split into 5 subsets, and 5-fold
cross-validation was used to assess the model's performance.
In each validation iteration, 4 subsets were used for model
training, and the remaining 1 subset was used for testing,
ensuring the reliability of the evaluation and the model's
generalization capability. The evaluation metrics used were
true positive rate, false positive rate, accuracy, and Dice
coefficient to assess the model's performance. The specific
experimental results are shown in Table 5

Table 5. Segmentation results of HQ-SAM model and Yolo-MLSAM model

Model Fold number TPR% FPR% ACC% Dice%
1 80.56 21.41 81.13 80.26
2 81.34 16.34 82.35 81.34
3 78.35 21.47 79.64 78.25
HQ-SAM
4 80.93 19.54 81.67 80.85
5 79.62 18.85 80.62 79.23
Average 80.16 19.52 81.08 79.99
1 89.31 11.35 90.31 89.21
2 87.56 13.52 88.25 87.76
Yolo- 3 85.41 15.42 86.24 83.59
MLSAM 4 88.57 12.67 89.35 87.58
5 86.43 14.23 87.52 85.74
Average 87.46 13.44 88.33 86.78
g,
2
=
<
@

Yolo-MLSAM results Yolo-MLSAM

Fig. 4 Comparison between HQ-SAM model and Yolo-MLSAM model
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Comparing the segmentation results of the HQ-SAM
model and the Yolo-MLSAM model, it is evident that the
Yolo-MLSAM model shows significant improvements across
all metrics. The true positive rate increased by 7.3%, while
the false positive rate decreased by 6.08%. Additionally, the
segmentation accuracy and Dice coefficient of the Yolo-
MLSAM model improved by 7.25% and 6.79%, respectively.
These results demonstrate that the proposed method has a
clear advantage over the HQ-SAM model in terms of feature
discrimination for glandular tissue and microcalcification
clusters. Therefore, the Yolo-MLSAM model allows for more
precise  segmentation of  glandular  tissue  and
microcalcification clusters.

As shown in Figure 4 for 6 sample cases, the HQ-SAM
model incorrectly identified the glandular region as the lesion
region in the first case, failing to effectively segment the
lesion area. In contrast, the Yolo-MLSAM model successfully
differentiated the regions. In the remaining five cases, the
Yolo-MLSAM model not only identified all lesion areas but
also performed more refined segmentation compared to the
HQ-SAM model. These segmentation results further validate
the superiority and accuracy of the Yolo-MLSAM model over
the HQ-SAM model in medical image segmentation tasks.

5. Summary

This study proposes a Yolo-MLSAM-based framework for
the segmentation of breast cancer microcalcification clusters,
addressing the challenges faced by existing models in
accurately ~ segmenting  small  targets such as
microcalcification clusters in medical images and the high
cost of manual annotations. The proposed framework
achieves more accurate and efficient medical image
segmentation. Despite improvements, certain issues and
limitations persist, such as suboptimal results when handling
more challenging categories. Additionally, the use of a
relatively simple pixel intensity strategy to handle regional
uncertainties, without considering information from
neighboring pixels, affects the accuracy and stability of the
segmentation results. Future work will integrate learning
from pixel contrasts across different categories to further
enhance the model's performance.
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