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Abstract: Although the HQ-SAM model has achieved some results in improving the accuracy of fuzzy boundary segmentation, 

it is still difficult to achieve accurate segmentation in medical image processing, especially in the face of small targets such as 

breast cancer microcalcification clusters, in addition, high labor costs make Prompt operation cumbersome, in order to solve 

these problems. A novel segmentation method of breast cancer microcalcification cluster based on SAM was proposed. The 

method first uses Yolov8 neural network model to accurately obtain the lesion region, then uses MLSAM model to perform more 

detailed semantic segmentation of the lesion region, and finally realizes semi-automatic annotation function, greatly reducing 

the cost and complexity of manual participation. The experimental results show that compared with the HQ-SAM model, the 

new method has significantly improved the segmentation performance, and the dice similarity coefficient reaches 81.78%. 
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1. Introduction 

Breast cancer remains the most prevalent malignancy 

among women globally, with early detection being crucial for 

reducing its high mortality rate [1]. Despite advances in 

screening technologies and therapeutic approaches, the 

disease's high incidence and pathological complexity 

continue to pose significant clinical challenges [2]. Full-field 

digital mammography (FFDM), as a mainstream non-

invasive screening modality, employs low-dose radiation to 

generate high-resolution breast tissue images, proving 

particularly effective for detecting early-stage lesions. The 

growing demand for breast cancer screening has propelled 

automated image analysis into a research focus for breast 

mass detection [3]. 

Traditional breast cancer segmentation methodologies 

exhibit notable limitations in clinical applications. These 

approaches demonstrate high sensitivity to image contrast 

variations, often failing to accurately identify lesions with 

subtle tissue differentiation [4]. Moreover, their performance 

significantly degrades when handling irregularly shaped 

lesions with indistinct boundaries, particularly for small 

early-stage tumors that lack distinctive morphological 

features [5]. To address these challenges, deep learning 

techniques have emerged as promising solutions in medical 

image segmentation. While convolutional neural networks 

(CNNs) have achieved remarkable progress in this domain, 

two critical limitations persist: 1) Progressive information 

loss during convolution and pooling operations compromises 

edge detection accuracy for blurred lesion boundaries; 2) 

Limited generalization capability across diverse clinical 

scenarios [6]. Recent advancements introduce the Segment 

Anything Model (SAM), which demonstrates exceptional 

zero-shot generalization capabilities and shows substantial 

potential for medical image segmentation applications [7]. 

2. Related work 

2.1. Medical image segmentation based on 

deep learning 

FFDM (Full-Field Digital Mammography) is a critical tool 

for breast cancer screening, and deep learning models have 

been widely applied to the automated segmentation of masses 

and microcalcifications in breast images. Models such as U-

Net and Mask R-CNN have demonstrated excellent 

performance in breast image segmentation tasks, especially in 

images with ambiguous lesion boundaries and irregular 

shapes, significantly improving segmentation accuracy. Punn 

et al. [8] proposed the RCA-IUnet model, which integrates 

residual connections, cross-spatial attention mechanisms, and 

Inception modules to enhance the segmentation ability of 

tumors in breast ultrasound images. This architecture is 

particularly adept at handling complex and noisy medical 

images, significantly improving segmentation precision while 

maintaining model efficiency, with notable improvements in 

detail capture and feature extraction. Ning et al. [9] 

introduced an improved model named SMU-net, which 

incorporates saliency-guided and shape-awareness 

mechanisms. By leveraging the saliency information from 

significant regions in the image, the model enhances 

segmentation accuracy and improves the recognition of 

complex shapes and blurred boundaries, thereby better 

capturing lesion morphological features and exhibiting 

outstanding segmentation performance in complex and low-

contrast medical images. Dar et al. [10] proposed the 

EfficientU-Net model, which optimizes the network 

architecture to improve segmentation efficiency and accuracy, 

particularly excelling in handling complex lesions in 

ultrasound images. This model combines lightweight design, 

reducing computational resources while significantly 

enhancing both segmentation and classification performance, 

thereby contributing to the automation of breast cancer 

diagnosis. Despite the significant accuracy improvements of 

U-Net in breast tumor and lesion segmentation, its 
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adaptability remains limited when dealing with complex 

shapes or blurred boundaries. In particular, segmentation 

performance suffers when handling lesions with irregular 

shapes. To address these limitations, some researchers have 

focused on using Mask R-CNN and its variants, incorporating 

multi-scale feature extraction and attention mechanisms to 

further improve segmentation accuracy and robustness, thus 

better handling complex segmentation tasks. Shen et al. [11] 

proposed an instance segmentation method that combines 

attention mechanisms with Mask R-CNN. By integrating 

attention mechanisms, this model efficiently captures 

important features, thereby enhancing object recognition and 

segmentation performance in complex scenarios. Li et al. [12] 

proposed the EMDFNet network, which enhances Mask R-

CNN's detection performance through multi-scale feature 

extraction. This network provides more accurate detection 

and segmentation of multiple targets in complex scenarios, 

especially improving model precision and robustness when 

dealing with images containing multiple objects and intricate 

backgrounds. 

2.2. Medical image segmentation based on 

deep learning 

U-Net, Mask R-CNN, and other mainstream neural 

network models are typically optimized for specific datasets, 

but such adjustments often limit their generalization 

capability. When these models are applied to contexts outside 

the training data, their performance may deteriorate, leading 

to restricted applicability. Meta introduced SAM, a universal 

large model capable of one-click segmentation of arbitrary 

objects in photos or videos, which enhances the model's 

adaptability and practicality across various scenarios. Some 

researchers have tested SAM's foundational model on 

medical images to explore its potential applications in the 

medical field, aiming to validate its performance in handling 

complex medical images and assess its suitability and 

accuracy for medical image segmentation. Mazurowski et al. 

[13] investigated SAM's application in medical image 

analysis, experimentally evaluating its performance with 

medical image data, analyzing the model’s applicability and 

limitations, and confirming SAM’s potential in medical 

image segmentation. They also proposed optimization 

directions to improve its effectiveness in the healthcare 

domain. Zhang et al. [14] systematically assessed the 

performance of the SAM model on 12 public medical image 

datasets, covering multiple organs and different imaging 

modalities. The study found that SAM underperformed in 

handling medical images with weak boundaries and low 

contrast, but segmentation results could be significantly 

improved by adding manual prompts (e.g., bounding boxes). 

Zhang et al. [15] proposed SAMed, which was specifically 

optimized for medical image segmentation. It incorporated a 

low-rank approximation (LoRA) fine-tuning strategy, 

enabling SAMed to efficiently process medical images. 

Training strategies such as warmup and the AdamW 

optimizer significantly accelerated model convergence and 

improved segmentation accuracy, though boundary handling 

remained somewhat imprecise. Ke et al. [16] introduced HQ-

SAM, which, while maintaining the original SAM model’s 

zero-shot segmentation ability, significantly improved 

segmentation precision through minimal adjustments. By 

incorporating high-quality output tokens (HQ-Output Token) 

and a global-local feature fusion mechanism, HQ-SAM 

produced more refined segmentation boundaries and 

performed well with complex object structures. However, this 

model still relies on manual prompts, and its application in 

medical image segmentation has limitations. 

To overcome the limitations of the HQ-SAM model, this 

paper proposes a new model called Yolo-MLSAM, which 

combines the improved Yolov8 neural network with the 

Multi-Level SAM (MLSAM) segmentation model. The main 

contributions are as follows: 

1) Introduction of attention mechanisms: The CBAM 

attention mechanism is added to the Yolov8 neural network to 

enhance the recognition of breast cancer microcalcification 

cluster lesion areas. 

2) Elimination of manual prompt dependence: By using the 

region boxes obtained from the Yolov8 neural network, the 

brightest points are extracted and used as point prompts for 

the MLSAM model input. 

3)Multi-level feature fusion: Features from the shallow, 

mid, and deep layers of Vision Transformer (ViT) are 

combined to fuse different levels of feature information, 

capturing both low-level details and high-level semantic 

features simultaneously. 

3. Yolo-MLSAM-based Segmentation 
Method for Breast Cancer 
Microcalcification Clusters 

The novel segmentation method for breast cancer 

microcalcification clusters proposed in this study, based on 

Yolo-MLSAM, primarily consists of two components: the 

region proposal network based on Yolov8 and the image 

segmentation based on the MLSAM model. The overall 

framework of the method is illustrated in Figure 1. 

 

Fig. 1 Flowchart of Yolo-MLSAM breast cancer microcalcification cluster segmentation method 

3.1. Regional candidate network based on 

CBAM-Yolov8 

To reduce the manual annotation cost of constructing 

Prompt engineering, Yolov8 is utilized for medical diagnostic 

image processing to delineate specific lesion areas and extract 

the brightest point from each lesion region as input for the 

MLSAM model. This approach aims to address two main 
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issues: first, to accurately identify and locate lesion regions in 

medical images, thereby improving diagnostic accuracy; 

second, to extract the highest brightness point from each 

lesion region and use these points as input for the MLSAM 

model, thus eliminating the reliance on manual prompts and 

further enhancing overall segmentation efficiency. 

To improve Yolov8's sensitivity to small target objects, the 

Mosaic data augmentation method [17,18] is introduced. The 

FFDM suspicious region localization algorithm based on 

Yolov8 utilizes FFDM data to construct the dataset and 

performs lesion detection through the Yolov8 network. The 

Yolov8 network employs convolutional layers, pooling layers, 

etc., to extract data features, and improves the network's 

localization ability through the construction of CIOU loss. 

The specific implementation process is as follows: 

Construct the FFDM dataset. Let the total number of patients 

be N, with each patient containing four FFDM images taken 

at different positions. The sample image dataset and label 

dataset are constructed with individual patients as the smallest 

unit. 

( )NmmmmI ,,,, 321 =           (1) 

( )NllllL ,,,, 321 =              (2) 

Here, m represents the image data, and l denotes the 

corresponding label data. 

vdIoULSIoU ++−=  21        (3) 

Here, IoU represents the intersection over union (IoU) 

between the predicted box and the ground truth box, α 

controls the impact of the distance loss on the overall loss, d 

denotes the normalized distance between the boundary box 

centers, β is the angle weight coefficient, and v represents the 

angular loss. 

Inserting CBAM after two feature extraction layers can 

enhance the feature representation ability in the early stages 

of the network. By adding CBAM at these positions, the 

network can more effectively focus on and strengthen key 

features, while filtering out irrelevant information. This helps 

improve the model's precision in target extraction, especially 

when dealing with complex backgrounds or multi-scale 

targets. The specific process is illustrated in Figure 2. 

 

Fig. 2 CBAM-Yolov8 network structure 

CBAM consists of two modules: the channel attention 

module and the spatial attention module [19]. The channel 

attention module assigns different weights to the feature maps 

of each channel by focusing on the inter-channel attention 

regions, enhancing the relevant features while suppressing the 

irrelevant ones. The spatial attention module, on the other 

hand, computes spatial attention weights by focusing on the 

important regions within a single-channel image, 

emphasizing critical spatial locations. By integrating these 

two modules, CBAM significantly improves the model’s 

ability to perceive microcalcification clusters in terms of both 

channel and spatial positions. The detailed description of 

CBAM is as follows: 

1) Channel Attention: The input feature map is F∈
RC×H×W, where C represents the number of channels, and H 

and W are the height and width, respectively. First, global 

average pooling and global maximum pooling are performed. 

The results of both pooling operations are then fed into a 

shared Multi-Layer Perceptron (MLP). After applying the 

ReLU activation function followed by the Sigmoid activation 

function, the attention weights for each channel are obtained. 

The specific formula is as follows: 

( )FAvgpoolF avg =1                     (4) 

( )FMaxpoolF =max1                     (5) 

( ) ( ) ( )( )max11 FMLPFMLPFW avgC +=      (6) 

Here, F1avg and F1max represent the results of the max 

pooling and average pooling operations, respectively, while σ 

denotes the activation function. 

2) Spatial Attention: First, global max pooling and average 

pooling are applied along the channel dimension of the input 

feature map. The results of these two pooling operations are 

then concatenated along the channel axis. A convolution 

operation is subsequently performed, followed by an 

activation function to generate the spatial attention weights. 

Finally, the spatial attention weights are multiplied by the 

input feature map, enhancing or suppressing the spatial 

locations within the feature map. 

( )FAvgpoolF avg =2                 (7) 
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( )FMaxpoolF =max2                 (8) 

( ) ( )( )max

77 2;2 FFfFM avgS

=        (9) 

Here, F2avg and F2max represent the results of the average 

pooling and max pooling operations, respectively, while f7×7 

denotes a 7×7 convolution. 

3) CBAM Attention Feature Map: The channel attention 

feature map is multiplied by the spatial attention map, refining 

the feature representation. This allows the model to focus on 

the most informative features in both dimensions, thereby 

enhancing the ability of Yolov8 to detect microcalcification 

clusters in breast cancer. The final output of CBAM is: 

( ) FFWF CC =                 (10) 

( ) CCSout FFMF =                 (11) 

To extract the brightest point in each lesion region, we first 

initialize the maximum brightness value Imax=−∞ and its 

corresponding coordinates (xmax,ymax). Then, we iterate 

through all the pixels in the region, and whenever a pixel 

value I(x,y)>Imax is found, we update Imax and the 

coordinates (xmax,ymax). The point with the highest 

brightness, (xmax,ymax), will be extracted and used as the 

key point for input into MLSAM. 

3.2. Image segmentation network based on 

MLSAM model 

Although the HQ-SAM (High-Quality Segment Anything 

Model) is capable of handling complex samples in medical 

image segmentation, it still faces challenges such as boundary 

errors and missed detections in certain cases. To address this 

issue, this paper proposes an improved segmentation 

algorithm, MLSAM. This algorithm enhances the model’s 

ability to capture local details and integrate global 

information by introducing multi-scale fusion of shallow, 

middle, and deep features, thereby improving segmentation 

accuracy. As shown in Figure 3. 

The key improvement in MLSAM lies in the utilization of 

the multi-layer outputs from the ViT model, combined with 

the results of the mask decoder for global feature fusion [20]. 

Specifically, the model extracts multi-scale features from 

different network layers: shallow features from the 6th output 

block of the ViT, middle features from the 12th output block, 

and deep features from the 24th output block. These features 

play distinct roles at different levels: shallow features 

primarily preserve fine-grained local information, such as 

edges and textures; middle features capture local details while 

beginning to integrate global contextual information; and 

deep features mainly represent global semantic information 

and macro-structural patterns [21]. 

 

Fig. 3 Segmentation flow chart based on MLSAM model 

Moreover, MLSAM further strengthens the capture and 

processing of middle-level features through the multi-layer 

self-attention mechanism in the ViT framework. Compared to 

low-level features, middle-level features are better suited for 

segmenting complex shapes, irregular boundaries, or blurred 

targets, improving segmentation accuracy. The multi-scale 

feature extraction and fusion strategy not only enhances the 

precision of the segmentation task but also strengthens the 

model’s ability to understand objects at different scales. 

To effectively fuse these multi-scale features, shallow, 

middle, and deep features are first upsampled to a spatial size 

of 256×256 through transposed convolution to ensure 

alignment in spatial dimensions. Then, these multi-scale 

features are globally fused with the output mask from the 

mask decoder. The mask decoder generates high-resolution 

masks through the image encoder, providing spatial 

information for the target regions, further enhancing 

segmentation precision. 

Ultimately, through the global fusion involving shallow, 

middle, and deep features, along with the mask generated by 

the mask decoder, MLSAM generates high-quality features. 

These features combine rich local details and global semantic 

information, significantly improving the model’s 

segmentation accuracy and robustness. 

3.3. Semi-automatic annotation based on Yolo-

MLSAM model 

To improve the efficiency of data annotation and model 

training in medical image segmentation tasks, and to reduce 

the high human and time costs associated with traditional data 

annotation workflows [22, 23], we introduce a semi-

automatic annotation method based on Yolo-MLSAM. This 

method combines annotated and unannotated data to enhance 

model performance, improve overall research efficiency, and 

reduce annotation costs. The entire semi-automatic 

annotation process can be divided into three stages: 

1)Assisted Manual Stage: The Yolo-MLSAM model is 

used to perform initial analysis and processing of FFDM 

images, detecting the breast cancer microcalcification clusters 

and generating preliminary annotation masks. The 

segmentation results are typically presented as masks, where 

a pixel value of "1" indicates pixels that need to be processed, 

and "0" represents non-lesion background areas. By analyzing 
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these masks, boundary pixels with irregular shapes are 

identified, and their X-axis and Y-axis coordinates are 

extracted. The bounding box of the shape is determined using 

a max-min value updating mechanism to optimize the shape 

boundaries and improve mask accuracy. The method for 

expressing the coordinates of all non-zero pixels in the mask 

is as follows: 

( )    1, == xymaskyxS               (12) 

Here, S represents a set containing a group of two-

dimensional coordinates (x,y), where (x,y) denotes a two-

dimensional coordinate point, and mask[y][x] represents the 

pixel value at the y row and x column of the mask. 

2) Semi-Automatic Stage: To enhance the model's 

performance in FFDM image annotation, a pre-trained model 

is deployed to automate the initial annotation process. The 

results generated in this stage undergo review by medical 

experts, which not only helps correct potential misjudgments 

made by the model but also focuses on specific lesion areas 

that the model may have failed to accurately segment. This 

step significantly improves the accuracy and completeness of 

the annotations and strengthens the identification of lesion 

features. The data, after being carefully corrected by experts, 

is fed back into the model for subsequent training iterations, 

with the aim of enhancing the model's prediction capabilities 

and reducing reliance on expert intervention. Through this 

iterative optimization process, the precision and efficiency of 

semi-automatic annotation are significantly improved, 

ultimately enhancing the model's ability to autonomously 

learn breast cancer image features. 

3) Fully Automatic Stage: In the final stage, Yolo-MLSAM 

is capable of independently generating masks for the images 

in the dataset without any manual input. Additionally, it can 

handle complex segmentation tasks, significantly reducing 

the cost of manual annotation. 

4. Experimental results 

4.1. Experimental data 

The breast mammography X-ray segmentation dataset used 

in this study is from the First Affiliated Hospital of Zhejiang 

University. The dataset contains 4,000 two-dimensional 

FFDM images from 1,000 patients, each annotated with 

corresponding segmentation masks. Each image was 

reviewed by two different annotators in two rounds to ensure 

proper de-identification. Any discrepancies found were 

arbitrated by a third radiologist to resolve the issues [24]. 

4.2. Evaluation indicators 

The purpose of this paper is to accurately segment the 

segmentation of the relevant medical image data, so the true 

positive rate (TPR), false positive rate (FPR), precision (Pr), 

F1 score, Dice index (Dice), Accuracy (ACC),Mean Average 

Precision @0.5(mAp@0.5),and mAP@0.5:0.95 are used as 

the evaluation indicators. The expression of each evaluation 

index is as follows: 

FNTP

TP

+
=TPR              (13) 

FPTN

FP

+
=FPR              (14) 
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+
=Pr                (15)  
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=                (16) 
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=ACC           (18) 
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i       (19) 


=

=
95.0

5.010
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Here, true-positive (TP) refers to the count of samples with 

correctly identified microcalcification clusters, while false-

negative (FN) represents the count of samples where 

microcalcification clusters were incorrectly missed. Similarly, 

false-positive (FP) denotes the count of samples wrongly 

identified as having microcalcification clusters. The number 

of true-negatives (TN) signifies the samples that were 

correctly determined as lacking microcalcification clusters, C 

is the number of classes and APi is the average precision of 

the i class, APi(IoU) is the AP of category i in the specified 

IoU threshold. 

4.3. Model performance evaluation 

The model performance evaluation is divided into three 

parts: evaluation of the region proposal network based on 

CBAM-Yolov8, evaluation of the performance of the 

MLSAM model, and evaluation of the performance of the 

Yolo-MLSAM model. 

4.3.1. Regional candidate network performance 

evaluation based on CBAM-Yolov8 

To validate the effectiveness of the CBAM attention 

mechanism, a comparison was made between the Yolov8 

model and its variants with the addition of CBAM, SE, and 

ECA attention mechanisms. The experimental results are 

shown in Table 1, with accuracy, true positive rate (TPR), F1 

score, mAP@0.5, and mAP@0.5:0.95 as the measurement 

metrics. 

Table 1. Experimental results of attention mechanism comparison 

Attention mechanism 
Pr% TPR% F1% mAP@0.5% mAP@0.5:0.95% 

CBAM SE ECA 

× × × 86.76 84.64 86.35 88.51 56.43 

√ × × 88.14 85.42 87.46 89.32 57.62 

× √ × 87.43 84.86 86.68 88.46 56.35 

× × √ 86.53 84.25 86.24 87.75 55.69 

According to the results in Table 1, compared to the original Yolov8 algorithm, the addition of the CBAM 

mailto:Precision@0.5,and
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attention mechanism improved the algorithm's accuracy by 

1.38%, true positive rate by 0.78%, F1 score by 1.11%, 

mAP@0.5 by 0.81%, and mAP@0.5:0.95 by 1.19%. After 

adding the SE attention mechanism, all performance metrics 

showed some improvement, but the gains were not as 

significant as those achieved by CBAM. In contrast, after 

adding the ECA attention mechanism, the accuracy decreased 

by 0.23%, true positive rate by 0.39%, F1 score by 0.11%, 

mAP@0.5 by 0.76%, and mAP@0.5:0.95 by 0.74%. 

Overall, the results in Table 1 suggest that the ECA 

attention mechanism not only leads to a decrease in 

performance but also increases the computational burden of 

the model. On the other hand, both the CBAM and SE 

attention mechanisms resulted in performance improvements, 

with CBAM showing the most significant enhancement, 

primarily due to its stronger modular design and feature 

enhancement capability. 

For FFDM images, the CBAM-Yolov8 network was 

employed for object detection, with true positive rate (TPR), 

false positive rate (FPR), accuracy, Dice coefficient, and 

precision as evaluation metrics. In the experiments, 

performance was compared across five confidence thresholds 

ranging from 0.1 to 0.5. During training, the batch size was 

set to 8, the number of epochs to 150, and the initial learning 

rate was set to 0.01, with a cosine annealing method used to 

adjust the learning rate. The specific experimental results are 

presented in Table 2. 

Table 2. Results of the confidence threshold comparison experiment 

Thresholdvalue TPR% FPR% ACC% Pr% Dice% 

0.1 97.86 49.13 67.53 50.54 65.42 

0.2 90.63 14.30 87.35 85.56 83.52 

0.3 65.23 11.26 80.83 74.37 78.22 

0.4 49.97 8.13 78.66 76.56 63.55 

0.5 30.21 7.41 74.51 68.23 44.32 

Based on the results presented in Table 2, it can be observed 

that when the confidence threshold is set to 0.1, the network 

achieves a high true positive rate of 97.86%. However, this 

high true positive rate is accompanied by a significant 

increase in the false positive rate, while both accuracy and 

Dice coefficient are relatively low. In this case, it is necessary 

to balance the trade-off between different metrics to 

determine the optimal model parameter settings. Ultimately, 

a confidence threshold of 0.2 was selected. Although the true 

positive rate decreases slightly under this setting, the false 

positive rate is substantially reduced, indicating that the 

model’s predictions are more reliable. Specifically, by 

adjusting the confidence threshold, a balance between true 

positive and false positive rates can be achieved, leading to 

more accurate and dependable results. This is not only crucial 

for improving the performance of the current model but also 

provides valuable guidance for achieving high-precision 

segmentation in subsequent SAM models. By optimizing 

model parameters, computer-aided diagnostic techniques can 

be applied more effectively, enhancing early detection and 

diagnostic efficiency for breast diseases, providing better 

medical services to patients, and offering more effective 

support and assistance for patients' health and healthcare 

needs. 

4.3.2. Performance evaluation based on MLSAM model 

The MLSAM model enhances the image's local details by 

adding an additional intermediate feature layer. To evaluate 

the effectiveness of this modification, an ablation study was 

conducted by comparing different model configurations, as 

shown in Table 3. 

Table 3. Ablation studies of MLSAM feature sources 

Model 
Global 

fusion 

Decoder mask 

features 

VITencoder 

mIoU% mBIoU% Early 

Layer 

Middle 

Layer 

Final 

Layer 

HQ-SAM √ √ √ × √ 79.63 71.56 

MLSAM 

× √ × × × 77.12 69.34 

√ √ × × × 77.84 70.86 

√ √ × × √ 78.82 71.23 

× √ √ √ √ 79.64 71.13 

√ √ √ √ √ 81.12 71.89 

As shown in Table 3, the MLSAM model outperforms the 

HQ-SAM model in both mIoU and mBIoU metrics. 

Specifically, MLSAM achieved an mIoU of 81.12%, which 

represents a slight improvement over HQ-SAM's 79.63%. 

Additionally, in terms of mBIoU, MLSAM's highest value 

reached 71.89%, surpassing HQ-SAM's 71.56%. This 

demonstrates that the MLSAM model effectively utilizes 

global fusion and information from different feature layers, 

leading to higher segmentation accuracy and improved 

boundary handling. Notably, it excels in integrating global 

context information and generating precise masks. 

The image encoder used in MLSAM has three different 

scale versions: Vit-b, Vit-l, and Vit-h, with Vit-b being the 

smallest model and Vit-h being the largest. To determine the 

most suitable image encoder, the following experiment was 

conducted, and the results are shown in Table 4. 
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Table 4. Image encoder type performance comparison experiment 

Image encoder type Model configuration TPR% FPR% ACC% Dice% 

Vit-b 

HQ-SAM 

68.35 23.86 73.56 58.62 

Vit-l 70.52 20.67 74.34 68.51 

Vit-h 73.23 18.62 75.12 74.35 

Vit-b 

MLSAM 

71.34 24.31 73.42 60.21 

Vit-l 73.62 23.53 74.35 70.54 

Vit-h 76.34 21.35 77.58 76.34 

As shown in the table above, larger model sizes achieve 

better fine-grained results in downstream tasks. This finding 

indicates a positive correlation between the model's scale and 

its processing capability, where larger models tend to capture 

and handle details more effectively, leading to improved 

overall performance. Therefore, in applications requiring high 

precision, selecting a larger-scale model may be an effective 

strategy to enhance the quality of the results. 

4.3.3. Performance evaluation based on Yolo-MLSAM 

model 

In the performance evaluation of the Yolo-MLSAM model, 

the dataset was randomly split into 5 subsets, and 5-fold 

cross-validation was used to assess the model's performance. 

In each validation iteration, 4 subsets were used for model 

training, and the remaining 1 subset was used for testing, 

ensuring the reliability of the evaluation and the model's 

generalization capability. The evaluation metrics used were 

true positive rate, false positive rate, accuracy, and Dice 

coefficient to assess the model's performance. The specific 

experimental results are shown in Table 5. 

Table 5. Segmentation results of HQ-SAM model and Yolo-MLSAM model 

Model Fold number TPR% FPR% ACC% Dice% 

HQ-SAM 

1 80.56 21.41 81.13 80.26 

2 81.34 16.34 82.35 81.34 

3 78.35 21.47 79.64 78.25 

4 80.93 19.54 81.67 80.85 

5 79.62 18.85 80.62 79.23 

Average 80.16 19.52 81.08 79.99 

Yolo- 

MLSAM 

1 89.31 11.35 90.31 89.21 

2 87.56 13.52 88.25 87.76 

3 85.41 15.42 86.24 83.59 

4 88.57 12.67 89.35 87.58 

5 86.43 14.23 87.52 85.74 

Average 87.46 13.44 88.33 86.78 

 

Fig. 4 Comparison between HQ-SAM model and Yolo-MLSAM model 
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Comparing the segmentation results of the HQ-SAM 

model and the Yolo-MLSAM model, it is evident that the 

Yolo-MLSAM model shows significant improvements across 

all metrics. The true positive rate increased by 7.3%, while 

the false positive rate decreased by 6.08%. Additionally, the 

segmentation accuracy and Dice coefficient of the Yolo-

MLSAM model improved by 7.25% and 6.79%, respectively. 

These results demonstrate that the proposed method has a 

clear advantage over the HQ-SAM model in terms of feature 

discrimination for glandular tissue and microcalcification 

clusters. Therefore, the Yolo-MLSAM model allows for more 

precise segmentation of glandular tissue and 

microcalcification clusters. 

As shown in Figure 4 for 6 sample cases, the HQ-SAM 

model incorrectly identified the glandular region as the lesion 

region in the first case, failing to effectively segment the 

lesion area. In contrast, the Yolo-MLSAM model successfully 

differentiated the regions. In the remaining five cases, the 

Yolo-MLSAM model not only identified all lesion areas but 

also performed more refined segmentation compared to the 

HQ-SAM model. These segmentation results further validate 

the superiority and accuracy of the Yolo-MLSAM model over 

the HQ-SAM model in medical image segmentation tasks. 

5. Summary 

This study proposes a Yolo-MLSAM-based framework for 

the segmentation of breast cancer microcalcification clusters, 

addressing the challenges faced by existing models in 

accurately segmenting small targets such as 

microcalcification clusters in medical images and the high 

cost of manual annotations. The proposed framework 

achieves more accurate and efficient medical image 

segmentation. Despite improvements, certain issues and 

limitations persist, such as suboptimal results when handling 

more challenging categories. Additionally, the use of a 

relatively simple pixel intensity strategy to handle regional 

uncertainties, without considering information from 

neighboring pixels, affects the accuracy and stability of the 

segmentation results. Future work will integrate learning 

from pixel contrasts across different categories to further 

enhance the model's performance. 
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