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Abstract: Brain tumor segmentation is a crucial task in medical image analysis, as accurate delineation of tumor regions is 

vital for clinical diagnosis, treatment planning, and prognosis assessment. Traditional Convolutional Neural Network (CNN)-

based models have demonstrated significant success in capturing local features, but they face challenges in modeling global 

context, which is essential for complex segmentation tasks. This review examines recent advancements in brain tumor 

segmentation, with a focus on CNNs, Transformers, Mamba, and Graph Neural Networks (GNNs), as well as their hybrid models. 

This review critically evaluates the strengths and limitations of each approach with respect to architecture, segmentation accuracy, 

and real-world applicability. Additionally, it addresses key challenges such as computational complexity and data scarcity, and 

proposes future research directions to enhance the practical use of these methods in clinical settings. 
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1. Introduction 

Medical image segmentation is a fundamental task in 

medical image analysis, playing a central role in identifying 

and evaluating anatomical structures, diseases, or regions of 

interest [1], [2]. By accurately delineating these areas, 

segmentation forms the basis for estimating disease prognosis 

and devising targeted treatment strategies, making it 

indispensable for advancing precision medicine and 

improving clinical outcomes [3]. Brain tumors refer to 

abnormal cell growth within or near the brain, including 

primary brain tumors and brain metastases [4]. Gliomas [5], 

one of the most common primary brain tumors, are classified 

into High-Grade Gliomas (HGG, III–IV) and Low-Grade 

Gliomas (LGG, I–II) [6]. Brain tumor segmentation is one of 

the most challenging tasks in medical image analysis due to 

the complex and diverse nature of brain tumors, variations in 

tumor shapes, sizes, and locations, as well as the difficulty of 

distinguishing tumors from surrounding healthy tissue [7].  

MRI is preferred over CT in brain tumor imaging due to its 

high contrast, low radiation [8], and diverse sequences (e.g., 

T1, T2, FLAIR, T1c), which are crucial for diagnosing and 

evaluating conditions like gliomas, neurodegenerative 

disorders, and treatment outcomes [9]. 

The process of brain tumor segmentation can be formally 

described as follows: given one or multiple images from 

various imaging modalities (e.g., different MRI sequences), 

the goal is to automatically assign each voxel or pixel in the 

input data to a specific predefined sub-region, effectively 

separating tumor areas from normal tissues.  

Accurate segmentation of brain tumors allows for 

localization and delineation of tumor boundaries, which is 

essential for surgical planning, radiation therapy, and 

monitoring treatment efficacy [10]. The diverse shapes, sizes, 

and locations of brain tumors present significant challenges 

for conventional segmentation approaches. As a result, 

achieving automatic and precise brain tumor segmentation is 

essential to minimize human errors, enhance clinical 

outcomes, and facilitate timely interventions. 

As shown in Figure 1, an example of a high-grade glioma 

(HGG) case is presented, demonstrating input data from 

several MRI modalities and their corresponding ground truth 

3D volume segmentation map. Each MRI sequence provides 

distinct tissue characteristics, while the ground truth includes 

manual annotations with different colors representing specific 

tumor sub-regions: Peritumoral Edema (green), Necrotic and 

Non-Enhancing Tumor Core (red), and Enhancing Tumor 

(yellow). 
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Fig. 1 Example of input MRI modalities and ground truth 3D 
volume segmentation map 

Over the past decade, the rise of deep learning techniques, 

particularly CNNs, has revolutionized segmentation methods 

[11]-[15]. CNNs have revolutionized medical image analysis 

by effectively capturing local features, with architectures like 

U-Net [16] further enhancing segmentation tasks through the 

use of encoder-decoder structures and skip connections.  

In recent years, the field of brain tumor segmentation has 

seen significant advancements through the integration of 

various deep learning architectures, each addressing unique 

challenges. Figure 2 illustrates the Keyword Frequency of 

Brain Tumor Segmentation in MICCAI (2021–2024). 

Traditional models like U-Net and its variants primarily rely 

on convolutional operations, which excel at capturing local 

features but fall short when it comes to modeling long-range 

dependencies and global relationships—critical for complex 

tasks like brain tumor delineation. To address these 

limitations, Vision Transformers (ViTs) [17] have emerged as 

a transformative approach, leveraging self-attention 

mechanisms to capture global context effectively and enhance 
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segmentation performance. 

 

Fig. 2 Keyword Frequency Map of Brain Tumor Segmentation in 
MICCAI (2021–2024) 

While ViTs address global dependencies, GNNs [18] 

provide a unique advantage by modeling irregular data 

structures and spatial relationships. Unlike CNNs that focus 

on local pixel-level features and Transformers that model 

global dependencies, GNNs excel at capturing complex 

anatomical and spatial relationships. These networks can 

effectively represent the connectivity between different 

regions of an image, allowing for a more nuanced 

understanding of the tumor's structure. 

Furthermore, Mamba [19], as a state-space model (SSM) 

[20], has shown immense promise in bridging the gap 

between local and global feature extraction. Mamba’s ability 

to model long-range dependencies efficiently and maintain 

linear computational complexity positions it as a key player 

in medical image segmentation. As Mamba continues to 

evolve, it is expected to drive significant advancements not 

only in medical imaging but also in a wide range of other 

domains. 

1.Introduction

2.Datasets and evaluation indicators

3.Pure Segmentation Methods

5.Summary and prospects

4.Hybrid Segmentation Methods

 

Fig. 3 The structure of the survey paper 

As shown in Figure 3, this paper aims to provide a 

comprehensive review of the current methodologies used in 

brain tumor segmentation, highlighting advancements, 

challenges, and future directions. The paper examines the 

strengths and weaknesses of traditional models like CNNs, as 

well as emerging approaches like ViTs, Mamba, and GNNs. 

By exploring hybrid models that combine these techniques, 

this review seeks to offer insights into how these architectures 

contribute to more accurate and efficient segmentation. The 

findings aim to guide future research efforts in overcoming 

existing challenges, such as computational complexity and 

data limitations, and to inspire innovations that will enhance 

the clinical applicability and real-world performance of brain 

tumor segmentation methods. 

2. Datasets and evaluation indicators 

2.1. Datasets 

In order to evaluate and compare brain tumor segmentation 

methods objectively, we used the official BraTS 2018, BraTS 

2019, and BraTS 2020 datasets[21][23], which have been 

widely used in brain tumor segmentation research. These 

datasets offer multi-modal MRI images with manually 

annotated ground truth labels, making them ideal for 

benchmarking segmentation algorithms. 

The BraTS 2018 dataset consists of 285 patients in the 

training set and 66 unlabeled patients in the validation set. The 

BraTS 2019 dataset includes 335 patients (259 HGG and 76 

LGG) in the training set, with 125 unlabeled patients in the 

validation set. The BraTS 2020 dataset contains 369 patients 

in the training set and 125 unlabeled patients in the validation 

set. Each image in the training sets includes four MRI 

modalities: T1, T1c, T2, and FLAIR, which capture distinct 

features of brain tumors. All images have dimensions of 

240×240×155 mm³ and a voxel spacing of 1×1×1 mm³.  

2.2. Evaluation indicators 

Brain tumor segmentation is a critical task in medical 

imaging, requiring precise and reliable methods to delineate 

tumor sub-regions. The datasets used for benchmarking, such 

as BraTS 2018, BraTS 2019, and BraTS 2020, provide 

manually annotated ground truth labels for four categories: 

Background (label 0), Necrosis and Non-Enhancing Tumor 

(NCR/NET, label 1), Peritumoral Edema (ED, label 2), and 

Enhancing Tumor (ET, label 4). During evaluation, the 

ground truth is reformatted into three primary regions for 

comparison: WT (labels 1, 2, and 4), TC (labels 1 and 4), and 

ET (label 1). 

In brain tumor segmentation tasks, two common evaluation 

metrics are the Dice Similarity Coefficient (Dice score) and 

the Hausdorff Distance (95%), which provide complementary 

insights into segmentation accuracy and boundary alignment. 

Then they can be expressed as follows: 

 

Dice =
2|𝐴∩𝐵|

|𝐴|+|𝐵|
=

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
               (1) 

 

𝐻𝐷 = max{sup
𝑝∈𝐵

inf
𝑞∈𝐴

𝑑(𝑝, 𝑞), sup
𝑞∈𝐴

inf
𝑝∈𝐵

𝑑(𝑝, 𝑞)}       (2) 

A and B are the sets representing the ground truth and 

predicted segmentation, respectively. The terms 𝑇𝑃, 𝐹𝑃, 𝑇𝑁, 

and 𝐹𝑁 denote true positive, false positive, true negative, and 

false negative voxel counts. 

3. Pure Segmentation Methods 

Table 1 presents the segmentation results of various CNN-

based or Transformer-based models on the BraTS dataset. It 

includes the Dice coefficients for three tumor regions: WT, 

TC, and ET. The Dice scores provide a measure of 

segmentation accuracy for each tumor region. 
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Table 1. Segmentation results of various models on the BraTS dataset. 

Method Dataset Dice_WT Dice_TC Dice_ET 

3D-UNet BraTS2018 0.760 0.885 0.718 

3D-UNet BraTS2020 0.882 0.830 0.782 

SegResNet BraTS2020 0.903 0.845 0.796 

nnUNet BraTS2020 0.907 0.848 0.814 

SwinUNet BraTS2020 0.872 0.809 0.744 

V-Net BraTS2019 0.739 0.887 0.766 

3.1. Pure CNN 

CNN-based brain tumor segmentation models have been 

extensively studied and are widely used in the field. 3D U-

Net [24] is a cornerstone in pure CNN-based segmentation. 

As a 3D extension of the classic U-Net, it processes 

volumetric data using 3D convolutions and pooling 

operations. The encoder-decoder structure with skip 

connections ensures that spatial context is captured 

effectively while preserving important details, improving 

segmentation accuracy. This model laid the foundation for 

future advancements by offering computational efficiency 

and robustness. 

Building on the success of U-Net, V-Net [25] introduces 

improvements such as residual convolutions in its encoder-

decoder structure. This modification enhances gradient flow 

and model stability. Furthermore, V-Net integrates Dice Loss, 

addressing the common issue of class imbalance in medical 

images, making it particularly useful for tasks like brain 

tumor segmentation. The use of "same" convolutions 

improves model interpretability, and its 3D convolutions 

continue the legacy of robust volumetric data processing 

started by 3D U-Net. 

SegResNet [26] introduces an additional layer of 

complexity by incorporating a Variational Autoencoder 

(VAE). This VAE module encourages better feature learning 

by reconstructing the original input during training, 

enhancing the encoder's ability to capture a more detailed 

latent representation. While its CNN-based framework 

remains the core, the addition of VAE boosts the model's 

ability to generalize and capture fine-grained details 

necessary for accurate segmentation. This innovation 

complements the skip connection approach of U-Net and V-

Net, allowing for more comprehensive feature extraction[27]. 

Finally, nnU-Net [28] takes automation a step further by 

streamlining the entire segmentation pipeline. While earlier 

models like 3D U-Net, V-Net, and SegResNet require manual 

adjustments, nnU-Net automates preprocessing, architecture 

selection, and training. This makes it highly adaptable to a 

wide range of datasets, eliminating the need for task-specific 

optimization. nnU-Net also maintains the strengths of its 

predecessors, ensuring that it performs consistently across 

different challenges, setting a new benchmark for efficiency 

and generalization.   

3.2. Pure Transformer 

The architecture based solely on Transformer, which only 

includes ViT layers, has limited applications in medical image 

segmentation because both global and local information are 

crucial for dense prediction tasks such as segmentation. 

Karimi et al. proposed a pure Transformer model for 3D 

segmentation, utilizing self-attention across linear 

embeddings of 3D patches. However, a significant drawback 

of pure Transformer models is the quadratic complexity of 

self-attention with respect to input image dimensions, which 

limits their applicability to high-resolution medical images. 

To overcome these limitations, Swin-Unet [29] was 

introduced as the first U-shaped pure Transformer-based 

architecture tailored for 2D medical image segmentation. It 

incorporates Swin Transformer [30] blocks with shifted 

window attention, enabling efficient multi-scale feature 

extraction and the modeling of both local and global context. 

The architecture comprises an encoder, bottleneck, decoder, 

and skip connections, which together facilitate precise spatial 

detail recovery and high-resolution segmentation predictions. 

By demonstrating superior performance over CNN and 

hybrid approaches, Swin-Unet highlights the potential of pure 

Transformer models in advancing medical image 

segmentation. 

3.3. Pure Mamba 

Mamba is an innovative state-space model that integrates 

selective information processing, hardware-aware algorithms, 

and a simplified SSM architecture. By parameterizing the 

input of the SSM, it enables selective attention, enhancing 

efficiency while maintaining performance. VM-UNet [31] is 

the first pure state-space model (SSM)-based architecture 

designed for medical image segmentation. It integrates the 

Vision Mamba model into a U-Net framework, leveraging the 

Visual State Space (VSS) block to efficiently capture long-

range dependencies with linear computational complexity. 

The architecture features an asymmetric encoder-decoder 

design with components like patch embedding, VSS blocks, 

and skip connections, offering a scalable and efficient 

solution for medical image segmentation tasks. 

Mamba-UNet [32]is a novel architecture for medical image 

segmentation that synergizes with U-Net. Mamba-UNet 

utilizes a pure Visual Mamba (VMamba)-based encoder-

decoder structure, incorporating skip connections to preserve 

spatial information at different scales. This design facilitates 

comprehensive feature learning, capturing intricate details 

and broader semantic contexts in medical images. 

Additionally, we introduce a novel integration mechanism 

within the VMamba block to ensure seamless connectivity 

and information flow between the encoder and decoder paths, 

further enhancing segmentation performance.  

3.4. Pure GNN 

The use of pure GNN models in medical image 

segmentation has been relatively underexplored. Unlike 

classification tasks, which benefit from GNNs' strength in 

modeling relationships and global dependencies, medical 

image segmentation requires precise delineation of complex 

anatomical structures at a pixel level. This precision is 
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difficult to achieve with GNNs alone due to their tendency to 

produce coarse boundaries rather than sharp, accurate edges. 

Consequently, most research focuses on hybrid approaches, 

combining GNNs with convolutional architectures (e.g., 

CNNs or Transformers) to leverage the strengths of both 

models. As of now, there is little to no established work on 

pure GNN-based medical segmentation models in 

mainstream literature, as researchers prioritize methods that 

achieve higher accuracy and boundary refinement through 

integrated frameworks. 

4. Hybrid Segmentation Methods 

Hybrid architectures that combine the strengths of multiple 

deep learning models have gained significant attention in 

medical image segmentation, particularly in tasks like brain 

tumor segmentation. By integrating different types of neural 

networks, these hybrid models leverage the complementary 

strengths of each architecture, enhancing the model's ability 

to capture both fine-grained local features and broader global 

dependencies. In the following sections, we categorize these 

hybrid models into four main types: CNN-Transformer 

hybrids, CNN-Mamba hybrids, GNN-Transformer hybrids, 

and CNN-GNN hybrids. Each of these approaches combines 

different architectural components to address unique 

challenges in segmentation tasks, offering a more effective 

solution than using a single architecture alone. Table 2 

presents segmentation results for hybrid architectures 

combining deep learning models, focusing on brain tumor 

segmentation. 
Table 2. Segmentation results of various models on the BraTS dataset. 

Method Dataset Dice_WT Dice_TC Dice_ET 

TransBTS BraTS2020 0.910 0.855 0.791 

UNETR BraTS2020 0.899 0.842 0.788 

NestedFormer BraTS2020 0.920 0.864 0.800 

SwinUNet BraTS2020 0.872 0.809 0.744 

S2CA-Net BraTS2020 0.804 0.914 0.852 

M2GCNet BraTS2019 0.856 0.843 0.783 

4.1. CNN-Transformer hybrids 

CNN-Transformer hybrid models combine the strengths of 

CNN’s local feature extraction and Transformer’s ability to 

model global dependencies, making them highly effective for 

3D brain tumor segmentation tasks. One significant 

advancement in this area is the SegFormer3D [33] model, 

which leverages hierarchical ViTs to enhance global 

contextual understanding while addressing the challenges of 

limited datasets and large computational requirements. 

Unlike traditional CNN-based models, which primarily focus 

on local feature extraction, SegFormer3D computes attention 

across multiscale volumetric features, improving 

segmentation accuracy. By utilizing an all-MLP decoder to 

aggregate local and global attention features, SegFormer3D 

avoids the need for complex decoders, making the design 

more memory-efficient. With 33× fewer parameters and a 13× 

reduction in GFLOPS compared to state-of-the-art models, 

SegFormer3D achieves competitive performance on 

benchmark datasets such as Synapse, BraTS, and ACDC, 

providing a lightweight yet highly accurate solution for 3D 

brain tumor segmentation. 

Building upon the success of hybrid architectures, S2CA-

Net [34] introduces a novel approach to brain tumor 

segmentation by addressing challenges such as variations in 

tumor shape, size, and location. While CNN-based models 

struggle with these challenges due to their limited receptive 

fields, S2CA-Net introduces a shape-scale co-awareness 

mechanism that learns both shape-aware and scale-aware 

features simultaneously. Key components like the Local-

Global Scale Mixer (LGSM), Multi-level Context Aggregator 

(MCA), and Multi-Scale Attentive Deformable Convolution 

(MS-ADC) work together to enhance segmentation accuracy 

and robustness. S2CA-Net outperforms existing methods on 

benchmark datasets, demonstrating its effectiveness in 

handling the complexities inherent in brain tumor 

segmentation. 

Further advancing the encoder-decoder design, TransBTS 

[35] combines the strengths of both 3D CNNs and 

Transformers, specifically targeting MRI-based brain tumor 

segmentation (BTS). The model employs 3D CNNs in the 

encoder to extract compact spatial and depth-aware feature 

maps, which are then passed into Transformer layers for 

global feature modeling. This combination ensures that 

TransBTS captures both local and global dependencies 

effectively. The decoder utilizes 3D CNN-based progressive 

feature upsampling to restore high-resolution segmentation 

outputs. Skip connections further enhance segmentation 

accuracy by preserving finer spatial details. Through this 

hybrid approach, TransBTS achieves a balance between 

computational efficiency and segmentation accuracy, making 

it well-suited for 3D medical imaging tasks. 

In the realm of multi-modal MRI segmentation, 

NestedFormer [36] introduces a novel architecture that 

explicitly models both intra-modal and inter-modal 

dependencies for brain tumor segmentation. The key 

innovation is the Nested Modal-Aware Feature Aggregation 

(NMaFA) module, which uses nested transformers to capture 

long-range spatial dependencies within each modality and 

across modalities. This is complemented by the Global 

Poolformer Encoder to enhance global feature extraction and 

a Multi-scale Fusion strategy with Modal-Sensitive Gating 

(MSG) to combine multi-modal features efficiently. 

NestedFormer stands out by effectively handling multi-modal 

fusion while maintaining computational efficiency, further 

advancing segmentation capabilities in multi-modal MRI 

datasets. 

Lastly, UNETR [37] and its improved version, UNETR++ 

[38], represent a shift toward Transformer-based architectures 

for 3D brain tumor segmentation. UNETR replaces the 

traditional CNN encoder in the U-Net structure with pure 

Transformers, capturing long-range dependencies and global 

context directly from the input volumetric data. This design is 

particularly well-suited for brain tumor segmentation, 

allowing for the effective modeling of complex structures 

through tokenized patches. Building upon this, UNETR++ 
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addresses the computational bottleneck of self-attention in 

Transformers by introducing the Efficient Paired Attention 

(EPA) block. This block learns spatial and channel 

dependencies through two mutually dependent branches 

using spatial and channel attention, ensuring linear 

complexity in spatial attention calculations. By sharing query 

and key mapping weights between the branches, UNETR++ 

reduces overall network parameters while maintaining high 

segmentation performance, offering an efficient and effective 

solution for 3D segmentation tasks. 

4.2. CNN-GNN hybrids 

DGRUnit [39] is a novel approach for brain tumor 

segmentation, comprising two parallel graph reasoning 

modules: a spatial reasoning module using a Graph 

Convolutional Network (GCN) to capture long-range spatial 

dependencies, and a channel reasoning module using a Graph 

Attention Network (GAT) to model contextual 

interdependencies between image channels. This approach 

significantly improves segmentation performance, 

particularly in tumor regions, and is highly flexible and 

generalizable. 

Building on this concept, M2GCNet [40] introduces the 

multi-modal graph convolution module (M2GCM), which 

incorporates two key components: the spatial-wise graph 

convolution module (SGCM) to capture spatial dependencies 

and the channel-wise graph convolution module (CGCM) to 

model contextual relationships between different image 

channels. M2GCNet further improves feature learning 

through the introduction of a multi-modal correlation loss, 

which captures nonlinear relationships between modality 

pairs, allowing for a more comprehensive understanding of 

the tumor’s characteristics across multiple MRI modalities. 

4.3. CNN- Mamba hybrids 

HC-Mamba [41] is a novel medical image segmentation 

model that integrates hybrid convolutional techniques with 

the modern state-space model Mamba. To address the 

challenges of image resolution reduction and information loss 

due to downsampling in medical images, HC-Mamba 

introduces dilated convolutions, enabling the model to 

capture broader contextual information without increasing 

computational costs. Additionally, the model utilizes 

depthwise separable convolutions, significantly reducing the 

number of parameters and computational requirements. By 

combining these techniques, HC-Mamba enhances the 

model's receptive field while maintaining high performance 

at a lower computational cost, making it effective for large-

scale medical image data processing.  

LKM-UNet [42] introduces a novel approach to medical 

image segmentation by incorporating Large-Kernel Mamba 

(LM) blocks, which excel at modeling local spaces compared 

to smaller kernels used in traditional CNNs and Transformers. 

The architecture leverages Hierarchical and Bidirectional 

Mamba blocks, designed to enhance both global and local 

spatial modeling capabilities of the Mamba mechanism in 

visual inputs. Additionally, Pixel-level Spatial Semantic 

Modeling (PiM) and Patch-level Spatial Semantic Modeling 

(PaM) are implemented to capture pixel-level neighborhood 

information and long-range dependencies respectively, 

further enhancing segmentation performance. 

Extending the concepts from LKM-UNet, LMa-UNet [43] 

focuses on overcoming the limitations of small-kernel CNNs 

and Transformer-based models, particularly their restricted 

receptive fields. By leveraging large-window-based Mamba 

networks, LMa-UNet enhances local spatial modeling while 

maintaining efficiency in global context modeling. This is 

achieved without the quadratic complexity of self-attention, 

making the model computationally efficient for large-scale 

medical image segmentation. Like LKM-UNet, LMa-UNet 

incorporates hierarchical and bidirectional Mamba blocks to 

improve both global and neighborhood space modeling. 

Additionally, the introduction of Pixel-level SSM (PiM) and 

Patch-level SSM (PaM) further boosts the model’s ability to 

extract local pixel features and model long-range 

dependencies. 

LightM-UNet [44] integrates Mamba and UNet within a 

lightweight framework, using residual visual Mamba layers 

to extract deep semantic features and model long-range 

spatial dependencies with linear complexity. With a parameter 

count of only 1M, LightM-UNet surpasses existing state-of-

the-art models in validation on 2D and 3D real-world datasets. 

This approach represents a novel attempt to incorporate 

Mamba into UNet as a lightweight optimization strategy, 

aiming to address computational resource constraints in 

practical medical applications.  

4.4. GNN-Transformer hybrids 

SGFormer [45] is a simplified graph Transformer designed 

for large-scale graph processing, utilizing a single-layer 

global attention mechanism for linear computational 

complexity. By combining this with a traditional GNN, 

SGFormer efficiently updates node representations and 

models interactions between all nodes. It eliminates the need 

for position encoding, edge embedding, and augmented loss 

functions, offering a simpler and more computationally 

efficient solution. Its ability to scale to graphs with billions of 

nodes makes SGFormer an ideal tool for handling large and 

complex medical datasets, enhancing segmentation accuracy 

while maintaining efficiency. 

4.5. Mamba-Transformer hybrids 

MambaVision [46] is a novel hybrid Mamba-Transformer 

backbone designed for vision applications, with a focus on 

efficiently modeling visual features. The key innovation 

involves redesigning the Mamba formulation to enhance 

global context learning, alongside integrating multiple self-

attention blocks in the final layers to better capture long-range 

spatial dependencies. For medical image segmentation, 

MambaVision’s ability to model complex spatial 

relationships and capture long-range dependencies can 

significantly improve the accuracy and efficiency of 

segmenting intricate anatomical structures and pathology, 

benefiting tasks like tumor detection and organ segmentation. 

5. Summary  

Brain tumor segmentation plays a vital role in medical 

image analysis, with accurate tumor delineation being 

essential for diagnosis, treatment planning, and prognosis 

assessment. This review has explored recent advancements in 

brain tumor segmentation, focusing on various deep learning 

techniques, including CNNs, Transformers, Mamba, and 

GNNs, as well as their hybrid models. The review highlights 

the strengths and limitations of these approaches, particularly 

in capturing both local features (via CNNs) and global context 

(via Transformers and other mechanisms). Traditional CNN-

based models have demonstrated excellent performance in 

capturing local information but face challenges in modeling 
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long-range dependencies, which are crucial for accurately 

segmenting complex tumor regions. Hybrid models, such as 

those combining CNNs and Transformers, have been 

effective in overcoming these limitations by enabling the 

simultaneous capture of detailed local features and global 

semantic information. 

Among the reviewed models, transformer-based 

architectures have gained significant attention for their ability 

to model long-range dependencies and improve segmentation 

accuracy. However, their high computational complexity 

remains a challenge. To address this, many models have 

incorporated transformer-based components with lower-

resolution feature maps or used them in specific parts of the 

architecture. Additionally, modifications to the traditional 

transformer structure, including the use of multi-head self-

attention mechanisms and MLP blocks, have helped reduce 

the parameter count while maintaining high segmentation 

performance. 

While the application of transformers has shown promise, 

challenges such as data scarcity, computational efficiency, 

and real-world applicability remain. In particular, the need for 

large annotated datasets is a significant hurdle, and self-

supervised, semi-supervised, and weakly-supervised learning 

approaches are emerging as promising solutions to mitigate 

this issue. Moreover, the integration of transformers with 

other techniques, such as Mamba and GNNs, holds potential 

for enhancing segmentation accuracy and improving model 

robustness. 
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