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Abstract: With the increasing pressure on global food security and the need for sustainable agricultural development, precision 

agriculture (Precision Agriculture) has become a key direction in modern agriculture. Artificial intelligence (AI) technology, 

through data-driven decision-making, shows great potential in precise fertilization and irrigation, and can control runoff pollution. 

This paper systematically reviews the application models of AI technology in key areas such as soil nutrient management, crop 

water demand prediction, and variable equipment control. It analyzes the technical advantages, existing challenges, and future 

trends, aiming to provide a reference for the development of smart agriculture technology. 
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1. Introduction 

1.1. Background and significance 

In traditional agriculture, the extensive management of 

fertilizers and water leads to resource waste, environmental 

pollution, and soil degradation. By implementing precise 

fertilization and irrigation techniques, it is possible to 

dynamically match the specific needs of crop growth with 

effective resource supply. This not only significantly 

improves resource utilization efficiency but also brings a 

series of environmental and economic benefits. In practical 

applications, precise fertilization can increase both the yield 

and quality of crops, improving nitrogen fertilizer efficiency 

by 30-50%. At the same time, the application of precise 

irrigation technology can effectively conserve water 

resources and enhance water use efficiency. The adoption of 

these technologies not only promotes healthy crop growth but 

also reduces the waste of fertilizers and water resources, 

which is crucial for promoting sustainable agricultural 

development. The introduction of AI technology holds 

promise for further addressing issues such as low data 

processing efficiency and weak model generalization 

capabilities in traditional precision agriculture. 

1.2. Evolution of AI technology 

Before the 2000s, geographic information systems (GIS) 

and remote sensing technology were widely used in 

environmental management, mainly manifested as static 

zoning management. During this period, GIS technology 

helped managers to classify and manage different regions by 

collecting and analyzing geographic spatial data. 

In the 2010s, the rise of the Internet of Things (IoT) and 

sensor technology has ushered in a new era of dynamic 

monitoring for environmental management. By deploying 

sensors at key points in the environment, managers can collect 

data in real time and continuously monitor environmental 

changes to achieve more accurate and timely environmental 

management. 

In recent years, with the emergence of Open AI and 

domestic DeepSeek, the development of artificial intelligence 

(AI) and machine learning technologies has brought 

revolutionary changes to environmental management. They 

can process and analyze massive amounts of environmental 

data, enabling real-time decision support for environmental 

conditions, making environmental management more 

intelligent. Moreover, they can predict trends in 

environmental changes, providing scientific evidence for 

decision-makers. 

1.3. Runoff pollution control 

Precision irrigation and precision fertilization effectively 

reduce the risk of agricultural non-point source pollution by 

optimizing water and fertilizer resource utilization, playing a 

significant role in controlling runoff pollution. Precision 

irrigation, leveraging soil moisture monitoring, 

meteorological data analysis, and intelligent control systems, 

achieves water supply on demand, reducing soil erosion and 

surface runoff caused by over-irrigation, thereby inhibiting 

the entry of nutrients like nitrogen and phosphorus into water 

bodies through runoff. Precision fertilization, based on crop 

nutrient requirements, soil nutrient content, and 

environmental carrying capacity, employs variable-rate 

fertilization techniques and controlled-release fertilizers to 

minimize excessive fertilizer application and nutrient loss, 

reducing the concentration of pollutants such as nitrates and 

phosphates in runoff. The combined use of these two methods 

can increase water and fertilizer efficiency by over 30%, 

reduce runoff pollution loads by 20-50%, and enhance soil 

retention capacity through root zone moisture regulation, 

further controlling pollutant migration and providing key 

technological support for watershed water environment 

management. 

2. Application of AI in precision 
fertilization 

2.1. Sensors collect and process data 

Multi-source Data Collection Technology: Advanced soil 
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sensors are used to obtain critical soil information. For 

example, pH sensors can accurately measure soil pH, 

providing a basis for determining whether the soil is suitable 

for crop growth. NPK content sensors can monitor the real-

time levels of nitrogen (N), phosphorus (P), and potassium (K) 

in the soil, which are essential nutrients for crop growth. 

Remote sensing image acquisition: Drones equipped with 

multispectral cameras can obtain image information across 

different bands. By analyzing these images, the health status, 

growth trends, and potential nutrient deficiency areas of crops 

can be identified. For example, under the near-infrared band, 

healthy crops and nutrient-deficient crops exhibit 

significantly different reflectance characteristics, which helps 

to accurately pinpoint problematic areas. 

Data Fusion Processing: Spatiotemporal Data Alignment: 

Data from different sources differ in time and space 

dimensions, requiring alignment. For example, soil sensor 

data is measured at fixed points, while multi-spectral images 

from drones cover an entire area. Using Geographic 

Information System (GIS) technology, all data can be aligned 

to the same geographic coordinate system and temporally 

synchronized based on the acquisition time, providing a 

foundation for subsequent analysis. 

Feature Extraction: Extract valuable features from multi-

source data for model training and analysis. For soil sensor 

data, plot trends in nutrient content changes and the 

fluctuation range of pH values; for multi-spectral images from 

drones, extract vegetation indices (such as normalized 

difference vegetation index NDVI), color characteristics, and 

texture features; meteorological data should focus on 

temperature change curves and peak rainfall values. Through 

feature extraction, raw data is transformed into more 

representative and analyzable forms, enhancing the efficiency 

and accuracy of model training. 

2.2. Learning model processing 

Machine learning models: Random Forest (RF), 

Support Vector Machine (SVM) 

In the task of soil fertility classification, various 

physicochemical properties of soil (such as pH, NPK content, 

and organic matter content) are used as input features. The 

model is trained using a large number of soil samples with 

known fertility levels, enabling it to predict the fertility level 

of unknown soil samples. This allows for the assessment of 

soil fertility conditions in different areas of farmland, thus 

enabling the formulation of differentiated fertilization plans. 

Convolutional neural network (CNN) 

CNN analyzes remote sensing image recognition of 

nutrient-deficient areas by constructing multiple 

convolutional layers and pooling layers, enabling automatic 

learning of crop features in remote sensing images. When 

identifying nutrient-deficient areas, a large number of 

multispectral image samples of normal and nutrient-deficient 

crops are collected, with the nutrient-deficient areas labeled. 

These samples are then fed into the CNN model for training, 

allowing the model to learn the characteristic patterns of 

nutrient-deficient crops in the image, such as the color and 

texture features of yellowing leaves at specific wavelengths. 

After training is complete, new remote sensing images can be 

input into the model to quickly and accurately identify 

nutrient-deficient areas. 

Deep learning model: Long Short-Term Memory 

(LSTM) 

LSTM can effectively process time series data. Based on 

the varying fertilizer requirements of crops at different growth 

stages, meteorological data, soil nutrient data, crop 

physiological indicators (such as plant height and leaf area), 

and fertilizer application rates are used as inputs to construct 

an LSTM model. The model learns from historical data to 

predict changes in fertilizer demand at different future growth 

stages, thereby dynamically adjusting fertilizer application 

rates and ratios to ensure that crops receive appropriate 

nutrient supply at all growth stages. 

2.3. AI applications 

Fertilization based on soil nutrient input variables: AI, 

through the analysis of large amounts of soil nutrient data 

collected by soil sensors, combined with machine learning 

and deep learning models, can generate detailed fertilization 

prescription maps down to each square meter. The model 

divides farmland into several zones based on different soil pH 

values, NPK content, and other nutrient indicators, and 

formulates personalized fertilization plans for each zone, 

including types of fertilizer, application rates, and timing. 

Farmers can apply precise fertilization according to the 

prescription map, ensuring that each zone receives 

appropriate nutrient supplementation. 

Reducing soil acidification caused by excessive 

fertilization: Traditional fertilization methods often lead to 

over-fertilization in certain areas, which can easily cause soil 

acidification over time, affecting crop growth and soil ecology. 

AI-based precision fertilization technology can apply 

fertilizer based on the actual nutrient status of the soil, 

avoiding the issue of over-fertilization. In areas with low soil 

pH values, reducing the use of acidic fertilizers and increasing 

the application of alkaline fertilizers or soil conditioners can 

gradually improve soil pH levels, maintaining soil health. 

3. Application of AI in precision 
irrigation 

3.1. Data perception: build the cornerstone of 

farmland information Internet of Things 

The foundation of precise irrigation lies in the real-time and 

comprehensive perception of water demand in farmland. The 

data sensing layer constructs a three-dimensional network for 

collecting environmental data from farmland through the 

deployment of various types of sensors and monitoring 

technologies: including soil moisture sensors, weather 

stations, and drone remote sensing. This network enables real-

time monitoring of multiple dimensions of information such 

as soil moisture, temperature, wind speed, and rainfall. Soil 

moisture sensors can penetrate deep into the soil to accurately 

measure the water content in different layers, helping 

managers understand the dynamic changes in soil moisture. 

By setting soil moisture thresholds, the system can 

automatically trigger irrigation or drainage commands when 

the soil moisture is below or above the set values, ensuring 

that crop roots are in an appropriate humidity environment. 

Weather stations monitor meteorological conditions over the 

farmland, including temperature, humidity, light intensity, 

and wind speed, which are used to predict crop transpiration 

and soil evaporation. In hot and dry weather, crop 

transpiration increases, requiring more irrigation to meet the 

water needs of crops; during rainy weather, however, 

irrigation should be reduced to prevent excessive water from 

causing crop diseases. Drone remote sensing uses high-

resolution cameras and multispectral sensors to obtain 
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information on canopy temperature and vegetation indices, 

further assessing the water stress status of crops. This helps 

managers promptly identify and address water deficiency 

issues, improving the accuracy and efficiency of irrigation. 

3.2. Precise monitoring of soil moisture 

Using "Time Domain Reflectometry (TDR)" and 

"Frequency Domain Reflectometry (FDR)" soil moisture 

sensors, real-time acquisition of parameters such as soil water 

content and electrical conductivity is achieved, accurately 

determining the water distribution status in the root zone. 

These sensors feature high precision and low power 

consumption, enabling dynamic monitoring of soil moisture 

at centimeter-level depths, providing fundamental data 

support for irrigation decisions. 

Through long-term monitoring and data analysis, the AI 

system can identify the water-holding capacity of different 

soil types and the moisture requirements for crop growth, 

thereby constructing matching irrigation models. The model 

can automatically calculate appropriate irrigation amounts 

and timing based on real-time soil moisture data, combined 

with real-time meteorological data and the crop growth cycle, 

achieving demand-driven irrigation. This not only effectively 

avoids water waste but also ensures that crops receive 

sufficient and moderate water supply throughout their growth 

process, improving both quality and yield. Additionally, the 

AI system can continuously optimize irrigation strategies by 

comparing historical irrigation data with crop growth 

conditions, achieving intelligent and precise irrigation 

management. 

3.3. Dynamic tracking of crop transpiration 

Using drone remote sensing thermal infrared imaging 

technology and stem flow sensors, the transpiration rate and 

water consumption of crops can be monitored in real time. 

Thermal infrared imaging can non-invasively obtain canopy 

temperature, which, combined with crop variety 

characteristics, can infer the transpiration intensity [1]; stem 

flow sensors directly measure changes in plant stem liquid 

flow, quantifying root water absorption capacity. Together, 

these two methods enable bidirectional data collection from 

"soil water supply" to "crop water demand." Based on phase 

analysis of multi-source perception data, LSTM models can 

establish dynamic mapping relationships between crop 

transpiration and environmental factors such as temperature, 

humidity, and solar radiation. For example, during the large 

trumpet stage of corn [2], the system analyzes the continuous 

7-day canopy temperature change curve (daily fluctuation 

range ±1.2℃) and stem flow rate data (daily peak up to 12.5 

mL/min), combined with the next three-day weather forecast, 

predicting that water demand will increase by 35% over the 

next 72 hours, thus initiating drip irrigation systems for water 

replenishment in advance. The AI system employs a 

multimodal data fusion strategy, dividing thermal infrared 

images into 1m² grid cells, extracting 12 features such as 

mean temperature and standard deviation for each cell; stem 

flow data is statistically accumulated hourly, linked to the 

geographical location information of the corresponding plant. 

Through attention mechanisms, temporal features are 

weighted, and when the transpiration rate in a certain area 

deviates from the normal range by ±15% for three 

consecutive hours, the system automatically triggers a 

diagnostic module, combining soil moisture data and 

meteorological conditions (such as a sudden increase in 

evaporation when wind speed>4m/s) to determine whether it 

is physiological water deficiency or environmental stress. 

3.4. Intelligent fusion of meteorological data 

Integrate meteorological forecast data (such as rainfall 

probability, evaporation rate, wind speed, etc.) and perform 

multi-source data fusion through edge computing devices or 

cloud platforms. For example, use rainfall prediction data to 

dynamically adjust irrigation plans to avoid flooding caused 

by cumulative rainwater; combine evaporation rate data to 

optimize irrigation timing and reduce ineffective water loss. 

In the three-dimensional spatial modeling of farmland, the 

AI system predicts crop water demand [3] using a correction 

formula based on the Peng-Montessori (Penman-Monteith) 

formula recommended by the Food and Agriculture 

Organization (FAO) of the United Nations. When the 

probability of rainfall over the next 24 hours exceeds 60%, 

the system automatically applies a reduction factor to the 

irrigation amount in the control algorithm and adjusts the 

evaporation compensation parameter according to the 

predicted wind speed. For sudden meteorological events, the 

AI system completes spatiotemporal registration of 

meteorological satellite data, ground automatic station data, 

and field micro-meteorological observation data within 15 

minutes, establishing a dynamic response model for 

precipitation intensity and soil infiltration rate. In a real-world 

case study during the winter survival period of wheat in 

northern Jiangsu, [4], the system successfully predicted the 

radiation cooling process on January 6, 2023, initiating frost 

prevention irrigation 12 hours earlier, maintaining the soil 

temperature at a depth of 0.5℃ above 0°C, reducing frost 

damage area by 63% compared to traditional methods. 

The deep reinforcement learning framework demonstrates 

unique advantages in irrigation decision-making, 

constructing a state-action value function. The state space 

includes 12-dimensional features such as soil moisture 

content (0-100%), crop water stress index (-2.0 to +2.0), and 

effective rainfall over the next 72 hours (0-30 mm). The 

action space corresponds to decision variables like irrigation 

duration (0-240 minutes) and irrigation intensity (2-8 m³/h). 

After 3,000 iterations of training, the model achieved an 

irrigation water use efficiency (WUE) improvement of 

3.8kg/m³ in a water-saving experiment on cornfields in the 

Huang-Huai-Hai Plain, which is 28% higher than the 

benchmark value of an expert system. Particularly in drought 

warning scenarios, the system leverages transfer learning to 

migrate feature patterns from historical disaster data (NDVI 

anomaly dataset from 2000-2020) in the northwest arid region 

to newly reclaimed irrigation areas, achieving a drought 

identification accuracy rate of 89.7%[5] despite insufficient 

training samples. 
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