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Abstract: With the increasing pressure on global food security and the need for sustainable agricultural development, precision
agriculture (Precision Agriculture) has become a key direction in modern agriculture. Artificial intelligence (Al) technology,
through data-driven decision-making, shows great potential in precise fertilization and irrigation, and can control runoff pollution.
This paper systematically reviews the application models of Al technology in key areas such as soil nutrient management, crop
water demand prediction, and variable equipment control. It analyzes the technical advantages, existing challenges, and future
trends, aiming to provide a reference for the development of smart agriculture technology.
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1. Introduction

1.1. Background and significance

In traditional agriculture, the extensive management of
fertilizers and water leads to resource waste, environmental
pollution, and soil degradation. By implementing precise
fertilization and irrigation techniques, it is possible to
dynamically match the specific needs of crop growth with
effective resource supply. This not only significantly
improves resource utilization efficiency but also brings a
series of environmental and economic benefits. In practical
applications, precise fertilization can increase both the yield
and quality of crops, improving nitrogen fertilizer efficiency
by 30-50%. At the same time, the application of precise
irrigation technology can effectively conserve water
resources and enhance water use efficiency. The adoption of
these technologies not only promotes healthy crop growth but
also reduces the waste of fertilizers and water resources,
which is crucial for promoting sustainable agricultural
development. The introduction of Al technology holds
promise for further addressing issues such as low data
processing efficiency and weak model generalization
capabilities in traditional precision agriculture.

1.2. Evolution of AI technology

Before the 2000s, geographic information systems (GIS)
and remote sensing technology were widely used in
environmental management, mainly manifested as static
zoning management. During this period, GIS technology
helped managers to classify and manage different regions by
collecting and analyzing geographic spatial data.

In the 2010s, the rise of the Internet of Things (IoT) and
sensor technology has ushered in a new era of dynamic
monitoring for environmental management. By deploying
sensors at key points in the environment, managers can collect
data in real time and continuously monitor environmental
changes to achieve more accurate and timely environmental
management.

In recent years, with the emergence of Open Al and
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domestic DeepSeek, the development of artificial intelligence
(AI) and machine learning technologies has brought
revolutionary changes to environmental management. They
can process and analyze massive amounts of environmental
data, enabling real-time decision support for environmental
conditions, making environmental management more
intelligent. Moreover, they can predict trends in
environmental changes, providing scientific evidence for
decision-makers.

1.3. Runoff pollution control

Precision irrigation and precision fertilization effectively
reduce the risk of agricultural non-point source pollution by
optimizing water and fertilizer resource utilization, playing a
significant role in controlling runoff pollution. Precision
irrigation,  leveraging  soil  moisture = monitoring,
meteorological data analysis, and intelligent control systems,
achieves water supply on demand, reducing soil erosion and
surface runoff caused by over-irrigation, thereby inhibiting
the entry of nutrients like nitrogen and phosphorus into water
bodies through runoff. Precision fertilization, based on crop
nutrient requirements, soil nutrient content, and
environmental carrying capacity, employs variable-rate
fertilization techniques and controlled-release fertilizers to
minimize excessive fertilizer application and nutrient loss,
reducing the concentration of pollutants such as nitrates and
phosphates in runoff. The combined use of these two methods
can increase water and fertilizer efficiency by over 30%,
reduce runoff pollution loads by 20-50%, and enhance soil
retention capacity through root zone moisture regulation,
further controlling pollutant migration and providing key
technological support for watershed water environment
management.

2. Application of Al in precision
fertilization

2.1. Sensors collect and process data
Multi-source Data Collection Technology: Advanced soil



sensors are used to obtain critical soil information. For
example, pH sensors can accurately measure soil pH,
providing a basis for determining whether the soil is suitable
for crop growth. NPK content sensors can monitor the real-
time levels of nitrogen (N), phosphorus (P), and potassium (K)
in the soil, which are essential nutrients for crop growth.

Remote sensing image acquisition: Drones equipped with
multispectral cameras can obtain image information across
different bands. By analyzing these images, the health status,
growth trends, and potential nutrient deficiency areas of crops
can be identified. For example, under the near-infrared band,
healthy crops and nutrient-deficient crops exhibit
significantly different reflectance characteristics, which helps
to accurately pinpoint problematic areas.

Data Fusion Processing: Spatiotemporal Data Alignment:
Data from different sources differ in time and space
dimensions, requiring alignment. For example, soil sensor
data is measured at fixed points, while multi-spectral images
from drones cover an entire area. Using Geographic
Information System (GIS) technology, all data can be aligned
to the same geographic coordinate system and temporally
synchronized based on the acquisition time, providing a
foundation for subsequent analysis.

Feature Extraction: Extract valuable features from multi-
source data for model training and analysis. For soil sensor
data, plot trends in nutrient content changes and the
fluctuation range of pH values; for multi-spectral images from
drones, extract vegetation indices (such as normalized
difference vegetation index NDVI), color characteristics, and
texture features; meteorological data should focus on
temperature change curves and peak rainfall values. Through
feature extraction, raw data is transformed into more
representative and analyzable forms, enhancing the efficiency
and accuracy of model training.

2.2. Learning model processing

Machine learning models: Random Forest (RF),
Support Vector Machine (SVM)

In the task of soil fertility -classification, various
physicochemical properties of soil (such as pH, NPK content,
and organic matter content) are used as input features. The
model is trained using a large number of soil samples with
known fertility levels, enabling it to predict the fertility level
of unknown soil samples. This allows for the assessment of
soil fertility conditions in different areas of farmland, thus
enabling the formulation of differentiated fertilization plans.

Convolutional neural network (CNN)

CNN analyzes remote sensing image recognition of
nutrient-deficient  areas by  constructing  multiple
convolutional layers and pooling layers, enabling automatic
learning of crop features in remote sensing images. When
identifying nutrient-deficient areas, a large number of
multispectral image samples of normal and nutrient-deficient
crops are collected, with the nutrient-deficient areas labeled.
These samples are then fed into the CNN model for training,
allowing the model to learn the characteristic patterns of
nutrient-deficient crops in the image, such as the color and
texture features of yellowing leaves at specific wavelengths.
After training is complete, new remote sensing images can be
input into the model to quickly and accurately identify
nutrient-deficient areas.

Deep learning model: Long Short-Term Memory
(LSTM)

LSTM can effectively process time series data. Based on
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the varying fertilizer requirements of crops at different growth
stages, meteorological data, soil nutrient data, crop
physiological indicators (such as plant height and leaf area),
and fertilizer application rates are used as inputs to construct
an LSTM model. The model learns from historical data to
predict changes in fertilizer demand at different future growth
stages, thereby dynamically adjusting fertilizer application
rates and ratios to ensure that crops receive appropriate
nutrient supply at all growth stages.

2.3. Al applications

Fertilization based on soil nutrient input variables: Al,
through the analysis of large amounts of soil nutrient data
collected by soil sensors, combined with machine learning
and deep learning models, can generate detailed fertilization
prescription maps down to each square meter. The model
divides farmland into several zones based on different soil pH
values, NPK content, and other nutrient indicators, and
formulates personalized fertilization plans for each zone,
including types of fertilizer, application rates, and timing.
Farmers can apply precise fertilization according to the

prescription map, ensuring that each zone receives
appropriate nutrient supplementation.
Reducing soil acidification caused by excessive

fertilization: Traditional fertilization methods often lead to
over-fertilization in certain areas, which can easily cause soil
acidification over time, affecting crop growth and soil ecology.
Al-based precision fertilization technology can apply
fertilizer based on the actual nutrient status of the soil,
avoiding the issue of over-fertilization. In areas with low soil
pH values, reducing the use of acidic fertilizers and increasing
the application of alkaline fertilizers or soil conditioners can
gradually improve soil pH levels, maintaining soil health.

3. Application of Al in precision
irrigation

3.1. Data perception: build the cornerstone of
farmland information Internet of Things

The foundation of precise irrigation lies in the real-time and
comprehensive perception of water demand in farmland. The
data sensing layer constructs a three-dimensional network for
collecting environmental data from farmland through the
deployment of various types of sensors and monitoring
technologies: including soil moisture sensors, weather
stations, and drone remote sensing. This network enables real-
time monitoring of multiple dimensions of information such
as soil moisture, temperature, wind speed, and rainfall. Soil
moisture sensors can penetrate deep into the soil to accurately
measure the water content in different layers, helping
managers understand the dynamic changes in soil moisture.
By setting soil moisture thresholds, the system can
automatically trigger irrigation or drainage commands when
the soil moisture is below or above the set values, ensuring
that crop roots are in an appropriate humidity environment.
Weather stations monitor meteorological conditions over the
farmland, including temperature, humidity, light intensity,
and wind speed, which are used to predict crop transpiration
and soil evaporation. In hot and dry weather, crop
transpiration increases, requiring more irrigation to meet the
water needs of crops; during rainy weather, however,
irrigation should be reduced to prevent excessive water from
causing crop diseases. Drone remote sensing uses high-
resolution cameras and multispectral sensors to obtain



information on canopy temperature and vegetation indices,
further assessing the water stress status of crops. This helps
managers promptly identify and address water deficiency
issues, improving the accuracy and efficiency of irrigation.

3.2. Precise monitoring of soil moisture

Using "Time Domain Reflectometry (TDR)" and
"Frequency Domain Reflectometry (FDR)" soil moisture
sensors, real-time acquisition of parameters such as soil water
content and electrical conductivity is achieved, accurately
determining the water distribution status in the root zone.
These sensors feature high precision and low power
consumption, enabling dynamic monitoring of soil moisture
at centimeter-level depths, providing fundamental data
support for irrigation decisions.

Through long-term monitoring and data analysis, the Al
system can identify the water-holding capacity of different
soil types and the moisture requirements for crop growth,
thereby constructing matching irrigation models. The model
can automatically calculate appropriate irrigation amounts
and timing based on real-time soil moisture data, combined
with real-time meteorological data and the crop growth cycle,
achieving demand-driven irrigation. This not only effectively
avoids water waste but also ensures that crops receive
sufficient and moderate water supply throughout their growth
process, improving both quality and yield. Additionally, the
Al system can continuously optimize irrigation strategies by
comparing historical irrigation data with crop growth
conditions, achieving intelligent and precise irrigation
management.

3.3. Dynamic tracking of crop transpiration

Using drone remote sensing thermal infrared imaging
technology and stem flow sensors, the transpiration rate and
water consumption of crops can be monitored in real time.
Thermal infrared imaging can non-invasively obtain canopy
temperature, which, combined with crop variety
characteristics, can infer the transpiration intensity [1]; stem
flow sensors directly measure changes in plant stem liquid
flow, quantifying root water absorption capacity. Together,
these two methods enable bidirectional data collection from
"soil water supply" to "crop water demand." Based on phase
analysis of multi-source perception data, LSTM models can
establish dynamic mapping relationships between crop
transpiration and environmental factors such as temperature,
humidity, and solar radiation. For example, during the large
trumpet stage of corn [2], the system analyzes the continuous
7-day canopy temperature change curve (daily fluctuation
range +1.2°C) and stem flow rate data (daily peak up to 12.5
mL/min), combined with the next three-day weather forecast,
predicting that water demand will increase by 35% over the
next 72 hours, thus initiating drip irrigation systems for water
replenishment in advance. The AI system employs a
multimodal data fusion strategy, dividing thermal infrared
images into 1m? grid cells, extracting 12 features such as
mean temperature and standard deviation for each cell; stem
flow data is statistically accumulated hourly, linked to the
geographical location information of the corresponding plant.
Through attention mechanisms, temporal features are
weighted, and when the transpiration rate in a certain area
deviates from the normal range by =+15% for three
consecutive hours, the system automatically triggers a
diagnostic module, combining soil moisture data and
meteorological conditions (such as a sudden increase in
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evaporation when wind speed>4m/s) to determine whether it
is physiological water deficiency or environmental stress.

3.4. Intelligent fusion of meteorological data

Integrate meteorological forecast data (such as rainfall
probability, evaporation rate, wind speed, etc.) and perform
multi-source data fusion through edge computing devices or
cloud platforms. For example, use rainfall prediction data to
dynamically adjust irrigation plans to avoid flooding caused
by cumulative rainwater; combine evaporation rate data to
optimize irrigation timing and reduce ineffective water loss.

In the three-dimensional spatial modeling of farmland, the
Al system predicts crop water demand [3] using a correction
formula based on the Peng-Montessori (Penman-Monteith)
formula recommended by the Food and Agriculture
Organization (FAO) of the United Nations. When the
probability of rainfall over the next 24 hours exceeds 60%,
the system automatically applies a reduction factor to the
irrigation amount in the control algorithm and adjusts the
evaporation compensation parameter according to the
predicted wind speed. For sudden meteorological events, the
Al system completes spatiotemporal registration of
meteorological satellite data, ground automatic station data,
and field micro-meteorological observation data within 15
minutes, establishing a dynamic response model for
precipitation intensity and soil infiltration rate. In a real-world
case study during the winter survival period of wheat in
northern Jiangsu, [4], the system successfully predicted the
radiation cooling process on January 6, 2023, initiating frost
prevention irrigation 12 hours earlier, maintaining the soil
temperature at a depth of 0.5°C above 0°C, reducing frost
damage area by 63% compared to traditional methods.

The deep reinforcement learning framework demonstrates
unique  advantages in  irrigation  decision-making,
constructing a state-action value function. The state space
includes 12-dimensional features such as soil moisture
content (0-100%), crop water stress index (-2.0 to +2.0), and
effective rainfall over the next 72 hours (0-30 mm). The
action space corresponds to decision variables like irrigation
duration (0-240 minutes) and irrigation intensity (2-8 m3/h).
After 3,000 iterations of training, the model achieved an
irrigation water use efficiency (WUE) improvement of
3.8kg/m® in a water-saving experiment on cornfields in the
Huang-Huai-Hai Plain, which is 28% higher than the
benchmark value of an expert system. Particularly in drought
warning scenarios, the system leverages transfer learning to
migrate feature patterns from historical disaster data (NDVI
anomaly dataset from 2000-2020) in the northwest arid region
to newly reclaimed irrigation areas, achieving a drought
identification accuracy rate of 89.7%[5] despite insufficient
training samples.
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