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Abstract: Fish play a vital role in the ecosystems of rivers and lakes, and the application of deep learning-based intelligent 

identification methods offers an efficient and accurate approach to water environment regulation. However, the random spatial 

distribution of underwater fish complicates the collection of extensive real-image datasets. This scarcity of images diminishes 

the generalization capability of deep learning models, thereby limiting their practical applicability. To address this challenge, we 

propose a diffusion model-based approach that involves pre-training on an open-source underwater fish dataset and subsequently 

generating realistic, diverse underwater fish images from pure noise. The generated images achieved 6.8070, 9.1829 and 26.3132 

on the evaluation metrics NIQE, PIQE and BRISQUE, respectively. 
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1. Introduction 

Deep learning techniques have been extensively applied to 

underwater fish recognition tasks. However, the scarcity of 

underwater image data significantly undermines the models' 

generalization capabilities, thus limiting high-precision 

recognition in real-world environments. First, factors such as 

water turbidity, variable light intensity, and inconsistent 

shooting conditions often result in low-quality underwater 

images, which necessitate pre-processing operations—such 

as denoising—to enhance image clarity. Second, despite the 

rich diversity of fish species and the complexity of their 

habitats, existing datasets are unable to capture all species 

across various environments. Finally, class imbalance causes 

common fish species to be overrepresented, while rare species 

are underrepresented, leading to model overfitting due to the 

limited image data available for these species. Data 

augmentation methods, including the addition of noise, 

rotation, and adjustments to contrast and brightness, are 

commonly employed to address the image shortage. However, 

such techniques do not inherently enrich the dataset's diversity, 

as they fail to capture the underlying pixel feature 

distributions and stylistic attributes of the images. In contrast, 

generative models can learn the intrinsic data distribution 

from existing samples, enabling them to comprehend image 

structure and distribution patterns and to generate new 

samples that are similar yet not identical to the original data. 

Their unsupervised nature, which obviates the need for 

labeled samples, makes these models especially useful in 

scenarios where image availability is limited. 

Generative models have achieved significant progress in 

deep learning, notably in image generation tasks. These 

include autoregressive models [1], generative adversarial 

networks [2], normalized streaming models [3], variational 

autoencoders [4], and diffusion models [5]. Among these, the 

denoising diffusion model is characterized by its 

parameterization through a Markov chain, comprising two 

primary components: the forward diffusion process and the 

backward denoising process. During the forward process, 

noise is progressively introduced into the image until it 

transforms entirely into a Gaussian noise distribution. In the 

subsequent backward process, the noise injected at each step 

is estimated and incrementally removed to recover the 

original, clean image. Despite their effectiveness, denoising 

diffusion models typically require extensive sampling time 

and encounter challenges in conditional generation tasks. To 

accelerate the sampling process, DDIM [6] introduced a non-

Markovian forward process that enables Gaussian diffusion 

under varying step sizes. Guided Diffusion [7] incorporates a 

classification network at each step of the backward process to 

steer the generation toward the desired outcome, while 

Classifier-free Guidance [8] circumvents the need for an 

auxiliary classifier, mitigating both computational overhead 

and the risk of erroneous gradient estimation inherent in 

classifier training. Building on these developments, Semantic 

Guided Diffusion [9] enhances classifier performance by 

generating descriptive reference maps in a text- and reference 

map-guided manner. Furthermore, GLIDE [10] presents a 

text-to-image generation approach based on diffusion models, 

with empirical evidence suggesting that the classifier-free 

method generates images that are more realistic and text-

consistent than those produced using CLIP guidance. 

Accordingly, this study employs a denoising diffusion 

model to generate fish images in complex underwater 

environments, thereby augmenting the underwater fish 

sample dataset. Furthermore, evaluation metrics for image 

generation are utilized to assess the realism of the synthesized 

images. 

2. Methods 

2.1. Denoising Diffusion Probabilistic Model 

The denoising diffusion probabilistic model (DDPM) is 

widely applied in image generation tasks. As illustrated in Fig. 

1, the green arrow denotes the forward process in which noise 

is progressively introduced, whereas the red arrow represents 

the reverse process where noise is removed. This 

methodology is based on a Markov chain process: during the 

forward process, noise is iteratively added to the original 

image until its structural features are entirely obliterated, and 

then a deep learning model is employed to learn the reverse 

process, gradually eliminating noise to restore the image's 
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original structure. For underwater fish images, the term 

"image structure" refers to the fish's morphology, texture, and 

color, in addition to the contextual background information of 

the aquatic environment. 

 

Figure 1. The denoising diffusion probabilistic model process 

Noise Addition Process: A clean image, 𝑥0 , is 

incrementally corrupted by the successive addition of 

Gaussian noise, 𝜖𝑡 , over T steps until it becomes pure 

Gaussian noise, 𝑥T. This process conforms to the following 

distribution: 

𝑥t~𝑞(𝑥𝑡|𝑥𝑡−1) = 𝒩(𝑥𝑡; √𝛼𝑡𝑥𝑡−1; (1 − 𝛼𝑡)Ι).    (1) 

where Ι is the unit matrix and 𝑥t  obeys a normal 

distribution with mean 𝜇t = √𝛼𝑡𝑥𝑡−1  and variance Σt =

(1 − 𝛼𝑡)Ι. 
Denoising process: Train the denoising model and then de-

predict the noise 𝜖𝜃 to approximate the true noise 𝜖𝑡 added 

by the forward process step. obeying the following 

distribution: 

𝑝𝜃(𝑥𝑡−1|𝑥𝑡) = 𝑁(𝑥𝑡−1; 𝜇𝜃(𝑥𝑡 , 𝑡); ∑ (𝑥𝑡 , 𝑡)𝜃 ).    (2) 

where 𝑝𝜃(𝑥𝑡−1|𝑥𝑡)  denotes the posterior probability of 

𝑥𝑡−1 under the condition that 𝑥𝑡 is known. 𝜃 represents the 

parameters of the neural network, 𝜇𝜃(𝑥𝑡 , 𝑡) is the mean, and 

∑ (𝑥𝑡 , 𝑡)𝜃  is the variance. 

2.2. U-Net model 

Based on the aforementioned mathematical framework, the 

underwater fish image dataset is utilized for training. The 

model employs the U-Net [11] architecture from the original 

denoising diffusion model, integrated with a self-supervised 

learning approach, to develop a pre-trained diffusion model 

for image generation. During training, the diffusion model 

learns to progressively restore the original image from various 

levels of noise, thereby capturing both the global structure and 

intricate details. Specifically, it gradually assimilates the 

morphology, texture, and color characteristics of underwater 

fish, as well as the contextual information of the surrounding 

aquatic environment. This self-supervised mechanism 

enables the model to autonomously extract features from the 

raw data without the need for manual labeling. 

In order to correspond the time step t of the diffusion model 

to the image noise enhancement and denoising process, a time 

coding approach is used. This includes Time Embedding and 

Time Linear. Time Embedding maps the current moment t to 

a vector form that the model can handle. Fixed position 

encoding based on trigonometric functions is used to satisfy 

the following equation: 

𝑃𝐸(𝑝𝑜𝑠, 2𝑡) = sin⁡(
𝑝𝑜𝑠

10000

2𝑡
𝑑𝑚𝑜𝑑𝑒𝑙

).      (3) 

𝑃𝐸(𝑝𝑜𝑠, 2𝑡 + 1) = cos⁡(
𝑝𝑜𝑠

10000

2𝑡
𝑑𝑚𝑜𝑑𝑒𝑙

).     (4) 

where PE stands for Positional Encoding, 2𝑡 + 1 and 2𝑡 
stand for odd and even moments respectively, and 𝑑𝑚𝑜𝑑𝑒𝑙  

denotes the number of channels. Then it is processed by time 

linearization to correspond to the feature map dimension. 

The loss function of the model is used to evaluate the 

difference between the noise predicted by the model and the 

noise added during the forward noise addition process, and is 

computed using the mean-square error (MSE). 

M𝑆𝐸 =⁡
1

𝑛
∑ (y𝑖 − 𝑦𝑖̂)

2n
𝑖=1 .            (5) 

2.3. Dataset 

An open-source underwater fish motion target detection 

dataset consisting of 355 images was selected. To ensure 

compatibility with computer processing algorithms, all 

images were standardized to a resolution of 256×256 pixels. 

 

Figure 2. Underwater fish images 

2.4. Experiments 

2.4.1. Evaluation metrics.  

Natural Image Quality Evaluator (NIQE) is a reference-

free image quality assessment metric based on the statistical 

features of natural scenes; the lower the metric, the higher the 

quality of the image. 

𝐷(𝑣1, 𝑣2, Σ1, Σ2) = √((𝑣1 − 𝑣2)
𝑇 (

Σ1Σ2

2
)
−1
(𝑣1 − 𝑣2)). (6) 

Where 𝑣1, 𝑣2, Σ1, Σ2  denote the mean vector and 

covariance matrix of natural and distorted images respectively. 

Perception based Image Quality Evaluator (PIQE) is a 

reference-free image quality evaluation metric based on 

perceptual features, which utilizes the block structure and 

noise characteristics of an image to calculate the quality score 

of the image. 

𝑃𝐼𝑄𝐸 = αB𝑀 + 𝛽𝑁𝑀.             (7) 

BM is a block effect metric that measures the block 

structure in an image, which is mainly affected by artifacts 

caused by image compression. NM is a noise metric that 
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measures the noise level in an image, which is mainly affected 

by the noise caused by image loss and transmission errors. 

Blind/Referenceless Image Spatial Quality Evaluator 

(BRISQUE) is a reference-free image quality evaluation 

metric based on statistical features of natural scenes. 

2.4.2. Experiment setup. 

All experiments in this paper were implemented on an 

NVIDIA 3070 GPU with 8G of video memory. Pytorch 

version 2.1.0 and CUDA version 11.8. The epochs is 200, the 

batch size is 2, the learning rate is 0.0001, and the preheat 

scheduler and cosine function decay are used. Optimizer is 

AdamW, time step T is 1000. 

2.4.3. Results 

The fish images of underwater scenes generated from 

random noisy images using a pre-trained diffusion model are 

shown in Figure 3. Its ability to generate all parts of the fish, 

including the head, body, tail and fins, is good. In most of the 

cases, the fish shows realistic motion patterns. Meanwhile, 

since the generation process is randomized, the brightness, 

resolution, background, and the number of fish in the image 

are also randomized, which fully demonstrates that the 

generative model can greatly expand the richness of the 

dataset, rather than simply enhancing the original image. 

     

     

Figure 3. Diffusion model generation results 

    

Figure 4. Some less desirable results 

In this paper, a total of 150 randomized underwater fish 

activity images were generated, which reached 6.8070, 

9.1829 and 26.3132 in NIQE, PIQE and BRISQUE, 

respectively. 

Table 1. Accuracy evaluation results 

NIQE PIQE BRISQUE 

6.8070 9.1829 26.3132 

 

However, since the generation process is not constrained 

by any geometrical form, sometimes the images also show 

distortion and blurring. These can be used as complementary 

images for complex underwater scenes to verify the 

robustness of the recognition model. However, the 

information like the acquisition time contained in the images 

in the original dataset can be generated very accurately by the 

diffusion model. 

2.5. Conclusions 

In this paper, we propose a method for capturing complex 

data distribution patterns of fish and their underwater 

environments from sample datasets. Our approach utilizes 

self-supervised training of diffusion models to learn the 

intrinsic structure of the images, thereby enhancing model 

robustness against noise, interference, and uncertainty. Noise 

is progressively eliminated from initially random images until 

diverse and realistic underwater fish images are generated. 

This method not only enriches the dataset but also addresses 

the scarcity of available underwater fish images. 
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