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Abstract: Fish play a vital role in the ecosystems of rivers and lakes, and the application of deep learning-based intelligent
identification methods offers an efficient and accurate approach to water environment regulation. However, the random spatial
distribution of underwater fish complicates the collection of extensive real-image datasets. This scarcity of images diminishes
the generalization capability of deep learning models, thereby limiting their practical applicability. To address this challenge, we
propose a diffusion model-based approach that involves pre-training on an open-source underwater fish dataset and subsequently
generating realistic, diverse underwater fish images from pure noise. The generated images achieved 6.8070, 9.1829 and 26.3132
on the evaluation metrics NIQE, PIQE and BRISQUE, respectively.
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1. Introduction

Deep learning techniques have been extensively applied to
underwater fish recognition tasks. However, the scarcity of
underwater image data significantly undermines the models'
generalization capabilities, thus limiting high-precision
recognition in real-world environments. First, factors such as
water turbidity, variable light intensity, and inconsistent
shooting conditions often result in low-quality underwater
images, which necessitate pre-processing operations—such
as denoising—to enhance image clarity. Second, despite the
rich diversity of fish species and the complexity of their
habitats, existing datasets are unable to capture all species
across various environments. Finally, class imbalance causes
common fish species to be overrepresented, while rare species
are underrepresented, leading to model overfitting due to the
limited image data available for these species. Data
augmentation methods, including the addition of noise,
rotation, and adjustments to contrast and brightness, are
commonly employed to address the image shortage. However,
such techniques do not inherently enrich the dataset's diversity,
as they fail to capture the underlying pixel feature
distributions and stylistic attributes of the images. In contrast,
generative models can learn the intrinsic data distribution
from existing samples, enabling them to comprehend image
structure and distribution patterns and to generate new
samples that are similar yet not identical to the original data.
Their unsupervised nature, which obviates the need for
labeled samples, makes these models especially useful in
scenarios where image availability is limited.

Generative models have achieved significant progress in
deep learning, notably in image generation tasks. These
include autoregressive models [1], generative adversarial
networks [2], normalized streaming models [3], variational
autoencoders [4], and diffusion models [5]. Among these, the
denoising diffusion model is characterized by its
parameterization through a Markov chain, comprising two
primary components: the forward diffusion process and the
backward denoising process. During the forward process,
noise is progressively introduced into the image until it
transforms entirely into a Gaussian noise distribution. In the
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subsequent backward process, the noise injected at each step
is estimated and incrementally removed to recover the
original, clean image. Despite their effectiveness, denoising
diffusion models typically require extensive sampling time
and encounter challenges in conditional generation tasks. To
accelerate the sampling process, DDIM [6] introduced a non-
Markovian forward process that enables Gaussian diffusion
under varying step sizes. Guided Diffusion [7] incorporates a
classification network at each step of the backward process to
steer the generation toward the desired outcome, while
Classifier-free Guidance [8] circumvents the need for an
auxiliary classifier, mitigating both computational overhead
and the risk of erroneous gradient estimation inherent in
classifier training. Building on these developments, Semantic
Guided Diffusion [9] enhances classifier performance by
generating descriptive reference maps in a text- and reference
map-guided manner. Furthermore, GLIDE [10] presents a
text-to-image generation approach based on diffusion models,
with empirical evidence suggesting that the classifier-free
method generates images that are more realistic and text-
consistent than those produced using CLIP guidance.

Accordingly, this study employs a denoising diffusion
model to generate fish images in complex underwater
environments, thereby augmenting the underwater fish
sample dataset. Furthermore, evaluation metrics for image
generation are utilized to assess the realism of the synthesized
images.

2. Methods

2.1. Denoising Diffusion Probabilistic Model

The denoising diffusion probabilistic model (DDPM) is
widely applied in image generation tasks. As illustrated in Fig.
1, the green arrow denotes the forward process in which noise
is progressively introduced, whereas the red arrow represents
the reverse process where noise is removed. This
methodology is based on a Markov chain process: during the
forward process, noise is iteratively added to the original
image until its structural features are entirely obliterated, and
then a deep learning model is employed to learn the reverse
process, gradually eliminating noise to restore the image's



original structure. For underwater fish images, the term
"image structure" refers to the fish's morphology, texture, and

color, in addition to the contextual background information of
the aquatic environment.
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Figure 1. The denoising diffusion probabilistic model process

Noise Addition Process: A clean image, x, , is
incrementally corrupted by the successive addition of
Gaussian noise, €,, over T steps until it becomes pure
Gaussian noise, xt. This process conforms to the following
distribution:

Xe~q(Xe|xXe—q) = N(xt; \/a_txt—]_; 1- at)l). )

where I is the unit matrix and x, obeys a normal
distribution with mean y, = \/a_txt_l and variance X, =
1-apl

Denoising process: Train the denoising model and then de-
predict the noise €4 to approximate the true noise €, added
by the forward process step. obeying the following
distribution:

Do (xe—11x¢) = N(xp_q; g (xp, £); Xo (X, ). )

where pg(x;_,|x;) denotes the posterior probability of
X;—1 under the condition that x; is known. 8 represents the
parameters of the neural network, ug(x;,t) is the mean, and
Yo(xs, t) is the variance.

2.2. U-Net model

Based on the aforementioned mathematical framework, the
underwater fish image dataset is utilized for training. The
model employs the U-Net [11] architecture from the original
denoising diffusion model, integrated with a self-supervised
learning approach, to develop a pre-trained diffusion model
for image generation. During training, the diffusion model
learns to progressively restore the original image from various
levels of noise, thereby capturing both the global structure and
intricate details. Specifically, it gradually assimilates the
morphology, texture, and color characteristics of underwater
fish, as well as the contextual information of the surrounding
aquatic environment. This self-supervised mechanism
enables the model to autonomously extract features from the
raw data without the need for manual labeling.

In order to correspond the time step t of the diffusion model
to the image noise enhancement and denoising process, a time
coding approach is used. This includes Time Embedding and
Time Linear. Time Embedding maps the current moment t to
a vector form that the model can handle. Fixed position
encoding based on trigonometric functions is used to satisfy
the following equation:

PE(pos,2t) = sin(%). 3)
100009model
PE(pos, 2t + 1) = cos(—22:). 4)
100009model

where PE stands for Positional Encoding, 2t +1 and 2t
stand for odd and even moments respectively, and d,;oqe;
denotes the number of channels. Then it is processed by time
linearization to correspond to the feature map dimension.

The loss function of the model is used to evaluate the
difference between the noise predicted by the model and the
noise added during the forward noise addition process, and is
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computed using the mean-square error (MSE).

1 -~
MSE = -3l (i — %)*. (5)

2.3. Dataset

An open-source underwater fish motion target detection
dataset consisting of 355 images was selected. To ensure
compatibility with computer processing algorithms, all
images were standardized to a resolution of 256x256 pixels.
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Figure 2. Underwater fish images

2.4. Experiments

2.4.1. Evaluation metrics.

Natural Image Quality Evaluator (NIQE) is a reference-
free image quality assessment metric based on the statistical
features of natural scenes; the lower the metric, the higher the
quality of the image.

D(vy,v2,31,%;) = ((vl —u)" (22)7 (v, - vz)). (6)

Where vy,v,,%;,%, denote the mean vector and
covariance matrix of natural and distorted images respectively.

Perception based Image Quality Evaluator (PIQE) is a
reference-free image quality evaluation metric based on
perceptual features, which utilizes the block structure and
noise characteristics of an image to calculate the quality score
of the image.

PIQE = aBM + BNM. @)

BM is a block effect metric that measures the block
structure in an image, which is mainly affected by artifacts
caused by image compression. NM is a noise metric that



measures the noise level in an image, which is mainly affected
by the noise caused by image loss and transmission errors.

Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE) is a reference-free image quality evaluation
metric based on statistical features of natural scenes.

2.4.2. Experiment setup.

All experiments in this paper were implemented on an
NVIDIA 3070 GPU with 8G of video memory. Pytorch
version 2.1.0 and CUDA version 11.8. The epochs is 200, the
batch size is 2, the learning rate is 0.0001, and the preheat
scheduler and cosine function decay are used. Optimizer is
AdamW, time step T is 1000.

2.4.3. Results

The fish images of underwater scenes generated from
random noisy images using a pre-trained diffusion model are
shown in Figure 3. Its ability to generate all parts of the fish,
including the head, body, tail and fins, is good. In most of the
cases, the fish shows realistic motion patterns. Meanwhile,
since the generation process is randomized, the brightness,
resolution, background, and the number of fish in the image
are also randomized, which fully demonstrates that the
generative model can greatly expand the richness of the
dataset, rather than simply enhancing the original image.

Figure 4. Some less desirable results

In this paper, a total of 150 randomized underwater fish
activity images were generated, which reached 6.8070,
9.1829 and 26.3132 in NIQE, PIQE and BRISQUE,
respectively.

Table 1. Accuracy evaluation results

NIQE
6.8070

PIQE |
9.1829

BRISQUE
26.3132

However, since the generation process is not constrained
by any geometrical form, sometimes the images also show
distortion and blurring. These can be used as complementary
images for complex underwater scenes to verify the
robustness of the recognition model. However, the
information like the acquisition time contained in the images
in the original dataset can be generated very accurately by the
diffusion model.

2.5. Conclusions

In this paper, we propose a method for capturing complex
data distribution patterns of fish and their underwater
environments from sample datasets. Our approach utilizes
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self-supervised training of diffusion models to learn the
intrinsic structure of the images, thereby enhancing model
robustness against noise, interference, and uncertainty. Noise
is progressively eliminated from initially random images until
diverse and realistic underwater fish images are generated.
This method not only enriches the dataset but also addresses
the scarcity of available underwater fish images.
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