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Abstract: Vision Transformers (ViTs) have become a strong substitute to Convolutional Neural Networks (CNNs) in computer
vision, providing a new method to learn global dependencies using self-attention operations. This survey paper provides an in-
depth analysis of the development, application, optimization, and deployment difficulties of ViT models. We begin by reviewing
the evolution of ViTs from their base architecture, and its subsequent adaptations to newly developed versions, including hybrids
with CNNs and multi-scale attention. We then investigate the applications of ViTs such as image classification, object detection,
segmentation, depth estimation, medical image analysis, and industry vision inspection. Methods to enhance ViT efficiency—
such as model pruning/quantization, hybridization with CNNs, and dynamic adaptation—are extensively discussed. However,
ViTs also have significant limitations including computational complexity, scaling and data challenges. Spatial Usage of Scratch
Programming Blocks Some potential solutions and future directions are addressed, such as deploying the work on edge device
and inclusion in multimodal learning systems. Synthesizing knowledge from recent literature, this paper provides a
comprehensive overview of the trends that have developed and six paradigms that currently exist for ViTs in computer vision.
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a field where annotated data are not available in abundance

1. Introduction
[1].

The rise of Vision Transformers (ViTs) represents a In order to break these limitations, the latter years showed
significant shift in the computer vision domain powered by a trend .towards q§veloping ViTs for efﬁciency and scalabil?ty.
the progress in deep learning and the transformative potential Strategies to mitigate the computational cost by applying
of transformer-based architectures. In the past, Convolutional techniques such as knowledge distillation, pruning,
Neural Networks (CNN) have been leaders in the widespread quantization, low-bit quantization (such as Posit arithmetic),
application of computer vision, using their capabilities for and hybridization with CNNs have been used while retaining
strong local feature representations and hierarchical the accuracy at a more controlled level [6][7]. Hybrid
structures. Nevertheless, such models were not sufficient to approaches such as Turbo ViT and Swin Transformer ‘Fries to
learn longer range dependencies and capture the global integrate the local modeling strengths of a CNN with the
context in images. While ViTs superior performance to CNNs global reasoning capabilities of a ViT.
on multiple benchmarks [1][2] is a strong reason for this trend, These architectural and algorithmic enhancements have
the fact that ViTs make use of self-attention to model global allowed ViTs to progress from being academic baselines to
features from a network of image patches provides a practical use cases. Today we are seeing ViTs being utilized
compelling reason for their adoption in the medical-imaging in a variety of computer vision tasks such as: image
sphere. classification, object detection, semantic segmentation, depth

The Vision Transformer is first proposed by Dosovitskiy et estimation and so on. Especially in the application domain of
al. in 2020 [3]. At their core, ViTs are inspired by transformers, ~ medical image analysis as well as industrial inspection, ViTs
proposed for NLP tasks and noted for their capacity to model have been shown to be particularly successful, more powerful
interdependencies among all tokens in a sequence. The ViT than traditional CNNs in tasks such as fundus image
concept is to chunk up an image into a sequence of patches of classification for retinal disease [1][8]; and defect detection
fixed size, flatten them, and run (the flattened patches) in manufacturing lines.
through a stock transformer encoder. This architecture allows With the development of the field, ViTs are starting to be
ViTs to model long-range spatial dependencies which is applied for edge computing and embedded systems using
harder for CNNs to handle sensibly. To add, the self-attention lightweight architectures and dynamic processing approaches.
mechanism applied in transformers allows ViTs to consider _With the-multimodal systems -- combining visual and. textual
relevant regions of the whole image rather than the local ones, information -- these are more general as components in next-
and as a result, it has been proven that ViTs can manage generation Al solutions, such as self-driving cars, health
complex image structures with global relationships [1][2]. diagnostics and robotics [6][7].

However, the practical deployment of ViTs encountered In this review article, we provide a comprehensive
non-neglectable bottlenecks first. One major drawback was summary on the state of the art on the progress, applications,
the high computational cost, especially because of the optimizations, challenges, and perspectives of Vision
quadratic time complexity in the self-attention mechanism. Transformer models in computer vision. Drawing on insights
That made ViTs less compatible to low-power devices and ~ from pas research, we analyze how ViTs have evolved, their
real-time applications [4][5]. Additionally, ViTs have many comparative advantages over CNNs, and how they are being
parameters and need huge number of labeled examples to adapted to meet the growing demands of modern Al
work effectively, which is may hard for generalization in such applications.
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2. Evolution of ViTs: The Journey
from CNN:s to Vision Transformers

Vision Transformers (ViTs), proposed by Dosovitskiy et al.
in 2020 [3], was a game changer in the world of computer
vision. Until that moment, Convolutional Neural Networks
(CNNs) were the norm as they are powerful in modeling local
hierarchical information. However, CNNs encountered
difficulty in modeling long-range spatial dependencies and
global context in images. ViTs bridged this gap by utilizing
self-attention mechanisms that were developed for processing
natural language, so it could be used on visual input.

2.1. The Birth of Vision Transformers

Original Vision Transformer (ViT) model introduced by
Dosovitskiy et al. (2020) [3] profoundly changed the way in
which deep learning models processed images. So instead of
running convolutional layers over images to capture local
features, ViT split an image up into non-overlapping patches,
flattened them and fed them into a model as a sequence of
tokens, just like words in an NLP model such as BERT.
Subsequently, these tokens were fed to the transformer
encoder, which employed self-attention to model the
dependency between patches that encode not only the local
information, but could also capture, to some extent, global
context within the image [5][9].

This enabled ViTs to address the shortcoming of CNNs in
reasoning over relationships between distant parts of an image,
and to be particularly well suited for tasks with global context
being important, such as image classification and object
detection. In their original work, the authors showed that ViTs
could match or even outperform classical CNN architectures
such as ResNet and VGG on large-scale image recognition
tasks such as the ImageNet classification benchmark [10].
Nevertheless, even with these achievements, ViTs were inx
computationally expensive as a result of the self-attention
operation. The operation complexity of the processing of an
image increased by the square against the number of the
patches, which made the ViTs difficult to apply to the
resource-limited devices like a mobile phone and an
embedded system [4][5].

2.2. The Rise of Efficient Vision Transformers

To overcome the challenges of these computationally-
intensive ViTs, researchers have already started investigating
different approaches to make them efficient without
compromising performance. Among the first kind of methods
were those that made changes to the structure of the ViT itself.
As an example, the Data-efficient Image Transformer (DeiT)
from Touvron et al. (2021) [10] were able to reduce the
amount of data required for training ViTs by using methods
like knowledge distillation. In this configuration, a smaller
“student” model learned to behave as a larger “teacher” model,
allowing the student to perform well on limited data [2].

Two hybrid architectures were introduced which were
designed to gain benefits of both CNNs and ViTs. Hybrid
models e.g., Swin Transformer [5] included visualizing the
local region using convolutional layers in the beginning, then
represented the entire input using the transformer layers. This
paradigm made full use of the advantages of CNN in local
features extraction and ViT in modeling global context. Such
hybrid approaches have shown better performance in various
tasks such as semantic segmentation and object detection in
which both local and global information is important [4] [7].
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Efficiency search also inspired other techniques such as
pruning, quantization and low-bit encoding. Techniques like
pruning aim at reducing the size of the model by cropping
unimportant parameters, while quantization drops the
precision of the model’s weights and activations in order to
speed up the inference while still retaining a small drop in the
overall performance. Low-bit encoding (e.g., with Posit
Arithmetic [4] has been shown to dramatically reduce the
computing requirements of ViTs and low-hardware-resources
devices can utilize this to deploy ViTs [2][7].

2.3. The Evolution of ViT Variants and
Architectures

Multiple versions of ViT have since been proposed to
address various problems and to beat other architectures on
specific tasks. An example of such a model is the Shifted
Window Transformer (Swin) by Liu et al. (2021) [5] that
proposes a family of hierarchical attention mechanisms to
reduce the computational complexity of self-attention by
limiting it in smaller windows. This offers not only an
efficient embedding of molecular features, but also enables to
capture both local and global features for the model to be used
for, e.g., object detection and image segmentation [2][4].

Recent works in the ViT domain also involve Tokens-to-
Tokens Vision Transformer (T2T-ViT) [11] to improve
tokenization procedure for meticulous image-representation,
LeViT [12] for combination of the CNN and ViT power to
form a compute-efficient model for the real time applications

[6]1[7].
2.4. ViTs in Specialized Domains

In addition to the conventional computer vision problems,
ViTs have been applied in more specific fields, such as
medical imaging and industrial visual inspection. In medical
imaging, ViTs have demonstrated robust results in clinical
tasks such as the classification of fundus images for retinal
diseases diagnosis [7], evidencing the potential of ViTs to
model subtle patterns within medical images, a purpose that
was difficult to achieve using CNN-based methods. Also,
regarding industrial visual inspection, ViTs have been used to
defect detection and quality control, performing better than
CNNs in difficult situations when the amount of data is
insufficient [1].

2.5. Future Directions

Vision Transformers are still far from mature. New
opportunities for further enhancement of them focusing on
more efficiently, scalability, and applicability to real-time
systems are being explored by researchers. Hybrid models
that integrate CNNs and ViTs are also an attractive direction,
since they strike a balance between local feature extraction
and global context modeling. Moreover, improvement of
quantization and pruning are anticipated to increasingly fine-
tune ViTs for edge deployment, which will reduce the entry
threshold for various applications [4][6].

In summary Arising from this work, the emergence of ViTs
is a paradigm and game changer for the computer vision
community, providing new modalities for modeling long-
articulated global context in images. And although issues
concerning computational efficiency persist, the promising
advancements are starting to make ViTs more feasible for
applications and have potential to be applied across diverse
domains including healthcare, autonomous driving, or
manufacturing [9][10].



3. Applications of Vision Transformers
(ViTs) in Computer Vision

Vision Transformers (ViTs) have attracted considerable
interest in the computer vision community because of their
capacity to capture fine-grained dependencies in images by
utilizing the transformer architecture created for natural
language processing. The new direction for using ViTs to
solve different computer vision tasks (such as image
classification, object detection, segmentation, 3D visions,
industrial applications and medical images) has been opened.
This section discusses how ViTs have been used successfully
for these tasks, and contrasts them with CNN-based
approaches.

Vision Transformer ViT

N

Object Detection

Image Classification

¥

Medical Imaging Industrial Inspection

Fig.1 Applications of ViTs in Computer Vision

Figure 1 shows a variety of computer vision tasks in
different categories, to which ViTs have been successfully
linked. From baseline tasks like image classification and
object detection to more specialized applications in fields like
medical imaging and industrial inspection, the diagram gives
an overview of ViTs’ increasing impact across various
domains

3.1. Image Classification

Image classification is still one of the most significant and
successful applications of ViTs. Considered related work, the
concept of deep learning in computer vision datasets
positioned CNNs as deep learning models. Traditional work
is that deep learning model would be used as traditional
architecture standardization. However, modeling long-range
dependencies is one of the weaknesses of CNNs and they are
not effective when the task demands a holistic analysis of the
image content. This is what ViTs aim to tackle, by first
treating an image as a sequence of patches and by then using
self-attention to model global relationships between all
patches in the sequence. This global attention mechanism
allows ViTs to model long-range dependencies, which is
better performance particularly when global context is
important.

ViTs have achieved impressive performance on benchmark
datasets like ImageNet, showing that the models are effective
for image classification. For instance, Dosovitskiy et al. (2020)
[3] demonstrated that ViTs were competitive with the state of
the art canned CNN models (like ResNet and VGG) on large
scale classification. However, ViTs are computation hungry
and introduce deployment issues in resource-starved
platforms. Efficient variants have been developed that address
these challenges. The DeiT (Data-efficient Image
Transformer) proposed in Touvron et al. (2021) [10], utilizes
knowledge distillation-based learning, in which a smaller
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student model learns from a larger teacher model, in an
attempt to be less wasteful of data while not losing in
performance. Also, the Swin Transformer [5] adopts a two-
level attention mechanism that restrains self-attention to local
windows and keeps windows connected across scales. This is
way in which computational efficiency is achieved without
sacrificing the capability to adequately model presence and
absence of both local and global features.

Table 1 shows a comparative summary of ViTs with
traditional CNNs in the aspect of image classification,
comparing the performance, computation cost, data efficiency,
as well as local and global feature representation. This
comparison highlights the increasing usage of ViT in large-
scale classification tasks, but also demonstrates the persistent
importance of CNN in this task when efficiency and easy
deployment is concerned.

Table 1. Comparison of ViTs with CNNs

Attribute ViTs CNNs
) ) Good, often
High, especially
Performance slightly lower than
for large datasets -
(Accuracy) ViTs in complex
(e.g., ImageNet)
tasks
. . Lower (local
High (quadratic
Computational receptive field and
complexity in self- . .
Cost hierarchical
attention)
structure)
High (larger Lower (smaller
Memory
models and number of
Requirements
parameters) parameters)
Excellent
Global (captures long- Limited (focus
Context range on local patterns)
dependencies)
Highly flexible Effective for
Application ) o )
in tasks requiring tasks with local
Flexibility
global context dependencies
High (needs Moderate (works
Data )
large datasets to well with smaller
Requirements
perform well) datasets)

In summary, Vision Transformers are a strong candidate for
image classification, outperforming classical CNN
approaches in terms of accuracy on large-scale data, while
recent works such as DeiT and Swin Transformer have
optimized them in a way that makes them performant enough
for applications.

3.2. Object Detection and Segmentation

Apart from the image classification task, ViTs have also
demonstrated excellent performance on object detection and
semantic segmentation tasks, which are object-level
recognition tasks and involve not just recognizing objects but
also localizing and delimiting objects inside an image. ViTs
have the advantage in these tasks, as they can capture global
dependencies and long-range communications.

DETR Detection Transformer is one of the pioneering



works that employs ViTs to object detection using
transformers directly, removing the need for hand-crafted
region proposals. DETR obviates the requirement of
designing handcrafted RPNs in conventional CNN-based
detectors by formulating object detection as direct set
prediction. The trained model adopts the transformer encoder-
decoder architecture to generate a fixed set of objects, which
employs global self-attention mechanism to model
interactions between all image regions. This allows DETR to
better handle challenging scenes (such as scenes with small
or overlapping objects) than classical approaches such as
Faster R-CNN.

In semantic segmentation, where the task is to label every
pixel into a class, ViTs are just as capable. Its capability to
draw information from an input image results in a more
connected and accurate segmentation. For example, the Swin
Transformer adopts a hierarchical structure with windowed
attentions which is able to capture local and global features
efficiently. It has been demonstrated that it is superior than the
State-of-the-art CNN-based models such as U-Net,
particularly in high-resolution tasks such as medical image
segmentation [5]. This feature of ViTs makes them especially
well-suited for tasks that require fine-grained pixel-wise
predictions.

Both object detection and segmentation task benefited from
the top-down hierarchy design of ViTs, which allows local
and global information to be incorporated in a natural way,
and are thus particularly well-suited to tasks with intricate
spatial dependencies.

3.3. Depth Estimation and 3D Vision

Another application area with strong impact for ViTs is
depth estimation or predicting the distance of objects from a
single image. CNNs usually fail to model the entire scene
structure, which is essential for accurate depth prediction, in
particular for cluttered and occluded areas.

Global attention mechanisms in Vision Transformers
provides a better solution. Ibrahem et al. (2022) [9] proposed
a lightweight ViT model for real-time monocular depth
estimation, which is a good trade-off between accuracy and
speed. Their encoder-decoder architecture based on ViT
produced high-quality depth maps with realtime performance
at around 20 FPS. This favorable feature of ViTs makes them
suitable for scenarios like auto-driving and robotics which
require fast and accurate depth perception.

ViTs are also promising for other 3D vision tasks such as
3D reconstruction and Scene understanding. Their spatial
relationships modelling with the whole image could provide
deeper context-aware and more accurate depth predictions,
promoting 3D system towards dynamic scene satisfaction.

3.4. Industrial Applications

In industrial environments, visual inspection is of upmost
importance in quality control, defect detection, and predictive
maintenance. Conventional systems—frequently built on
CNNs or human examination—may not be efficient,
especially in processing massive, complex input data or subtle
outliers. Recent works have also attracted much interest in
ViTs, which provide an alternative due to their global
reasoning ability. For instance, Hiitten et al. (2022) [1]
leveraged ViTs on railway freight car maintenance to
diagnose defects in metal and wooden structures. They were
able to outperform CNNSs in detecting cracks and scratches by
capturing the presence of both fine details and context from a
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larger image area. To improve speed and efficiency, hybrid
models, such as TurboViT, have also been proposed. At the
intersection of CNN efficiency and ViT contextual awareness,
these models would be suitable for real-time industrial use [6].
With efficient computation without accuracy compromise,
these models also enable rapid and robust inspections in
sectors such as automotive, manufacturing and transportation.

3.5. Medical Image Analysis

Last but not least, the most important field for applying
Vision Transformers is medical image analysis. ViTs have
proven to be highly valuable also in the medical image
computing research, such as interpreting subtle visual cues is
important for correctly diagnosing diseases. Compared to
CNNs that can concentrate on limited local features, ViTs
have a more global view since they model the entire context
of the image, an important feature in disease detection and
diagnosis.

One prominent application is in fundus image classification
used for diagnosing retinal disease. Bi et al. (2023) [7]
proposed MIL-ViT, which combines multiple instance
learning with ViTs. This model is very good at recognizing
subtle, scattered signs of conditions like diabetic retinopathy
and glaucoma. MIL-ViT can jointly learn global and local
representations, which helps to obtain better classification
results, compared with CNNs.

Besides for classification, to address the problem of
medical segmentation and lesion detection, input context with
small anomalies to accurate boundary line is crucial.

As they are able to capture long-range and finely detailed
features [1], they are advantageous in spatially precise
predictions.

Vision Transformers have shown wide coverage and strong
performance in different computer vision problems. From
image-level to object-level, and from the industrial visual
inspection to medical image analysis, the ViTs can offer an
alternative solution to many challenges faced by the
conventional CNN-based methods. They are able to represent
long-range dependencies and capture global context, so they
are excellent for modeling problems with complex spatial
interactions. With more and more investigation of ViT and
constant structure optimization by replacing, incremental and
integration, ViTs territo ry in computer vision will be greatly
expanded.

4. Techniques to Improve ViT
Performance

Vision Transformers (ViTs) have shown great potential in
computer vision with their capacity to model long-range
dependencies and encode global context. However, they are
computationally expensive, and memory demanded will
hinder their applications in practice, particularly on devices
of limited resources. This part presents few major tactics that
have been suggested for improving the ViT efficiency and
practicality Key techniques to improve ViT efficiency,
Efficiency  improvements, = Hybrid = models  and
dynamic/adaptive architectures.

4.1. Efficiency Enhancements

A primary limitation of ViTs is their high computational
cost, mainly due to the self-attention mechanism whose
complexity scales quadratically with the number of image
patches. Addressing this requires strategies that maintain



performance while reducing computational demands.

4.1.1. Low-bit Encoding

Low-bit encoding, like Posit Arithmetic, has potential to be
a solution. ViTs such as traditional run on 32- or 64-bit
floating point representations which consumes a significant
amount of memory and processing capability. On the other
hand, Posit Arithmetic uses a smaller number of bits to encode
parameters, which can reduce model size and the amount of
energy consumption while maintaining accuracy [4]. It
enables high precision even for very low bit-width values
compared to other standard binary formats. Applying this
treatment to ViTs results in faster computation and lower
memory requirements, enabling deployment to embedded and
mobile devices.

4.1.2. Model Compression Techniques

Pruning is an alternative solution that involves eliminating
unnecessary parameters or connections in the model. Number
of operations is reduced with no loss in latency. This is part
of what makes ViTs more lightweight, and suitable for real-
time applications [6]. In addition, knowledge distillation
enhances efficiency by training a smaller “student” model to
emulate the output of a larger “teacher” model. This method
ensures that compact ViTs are able to achieve high accuracy
with less computational resources. One such example is Data-
efficient Image Transformer (DeiT) that employ distillation to
lower the requirement for train-ing data Whilst obtaining
competitive results [10].

These efficiency improvement methods, such as Posit
Arithmetic, pruning and distillation, are essential in order to
make ViTs more practical in places where resources are
limited, such as mobile, autonomous, and on the edge devices.

4.2. Hybrid Models

Although ViTs are good at modeling global dependencies,
they are not as effective in learning local image
representations. Joint ViT and CNN models aim to tackle this
problem by taking advantage of the local feature extraction

offered by CNNs and the global attention mechanisms of ViTs.

Figure 2 shows yet another hybrid model that combines
CNN layers to capture local features quickly, done so before
transformer layers that capture long-range dependencies. This
architecture strikes a balance between efficiency and
performance and mitigates the shortcomings of standalone
ViTs.

TurboViT is one of such hybrid models that hybridize CNN
based operations with transformer attention to effectively
capture local and global features [6]. To reduce complexity,
TurboViT adds a mask unit attention mechanism and uses Q-
pooling, which can obtain more than 2.4x the model size
reduction and 3.4x fewer FLOPs than FasterViT with small
degradation in accuracy, making it suitable for real-time and
edge scenarios. DMFormer [13] further fuses DMA with
convolution layers for multi-scale feature representation. The
model is based on multi-kernel size and dilation convolution
which helps the model learn features at different levels of
resolution and shows a better performance in both image
classification and segmentation.

Such hybrid models combine the advantages of CNNs and
ViTs and could lead to more effective and efficient
architectures. It combines the local receptive field in CNNs
and global context modeling capability of ViTs, leading to
accurate and efficient performance as compared with ViTs
and CNNs alone methods.
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Fig.2 Techniques to Improve ViT Performance

4.3. Dynamic and Adaptive Models

Models that vary the complexity for an input data are often
needed in practical applications. In ViTs the analogue
involves functionally altering the number of attention heads,
layers or patch resolution according to task difficulty. These
models increase computational efficiency but maintain
efficacy.

MIA-Former is a type of dynamic ViT architecture for
adaptive computation according to the image complexity [14].
It uses a Focus and Forget paradigm to turn on more
transformer layers for complex images and fewer for easier
ones. This flexibility enables MIA-Former to balance
computation and accuracy, which is particularly favorable for
real-time inference and edge deployment.it has been noted
that these are particularly interesting models for edge
computing, given the constrained resources there. By
adapting complexity to input needs, adaptive ViTs can
accommodate  smaller models without sacrificing
performance [15].

In conclusion, dynamic models such as MIA-Former, as
well as efficiency methods (pruning, quantization, and KD)
and hybrid architectures (e.g., TurboViT and DMFormer) are
instrumental in making ViTs ready for real-world applications,
ranging from health to automation, with more to come in the
future.

5. Challenges in Deploying Vision
Transformers (ViTs)

Despite their strong performance in computer vision tasks,
Vision Transformers (ViTs) face several challenges when
transitioning from research to real-world deployment. Key
challenges include high computational demands, limited
scalability due to memory constraints, and the need for large
labeled datasets.

5.1. High Computational Cost

The quadratic computational complexity of the self-
attention mechanism is one of the major challenges Vision
Transformers (ViTs) have to deal with. In ViTs, an image is
broken down into fixed-size patches, and every patch attends



to all other patches in the image. This leads to a computation
complexity growing quadratically with the number of patches,
which causes the model to be highly resource-hungry when it
is applied to high-resolution images [3].

Such computation overheads may seriously limit the wide-
distribution of ViTs in practical real-time applications e.g.,
autonomous driving, robotic, video surveillance, which
requires low latency and high throughput. Even with enabling
the use of strong GPUs / TPUs achieving an acceptable real-
time performance could be difficult, especially when you
work in an edge / mobile environment. In this scenario, model
quantization has become a promising approach, compressing
the computational complexity by lowering the precision of
operations, such that reduced computational, and memory
overhead can be demanded, and having little impact on other
factors.

To mitigate this, approaches like local self-attention (as in
Swin Transformer) reduce complexity by restricting attention
to small windows. In addition, model pruning, quantization,
and knowledge distillation (e.g., DeiT) have been used to
reduce the FLOPs while maintaining the performance [4][5].
However, even with these efficiencies, self-attention remains
the primary computational bottleneck in using ViTs.

5.2. Scalability and Memory Constraints

Another drawback is that ViTs scalability is not well -
established, especially in terms of large models memory
footprint and compute requirements. For instance, ViT-H/14
has more than 632 million parameters, needing 2528 MB
memory and 162 GFLOPs per inference [5]. This makes it

inapplicable to memory-limited scenarios, including
embedded devices and mobile phones.
Big ViTs achieve better accuracy, but they are

computationally heavy and not deployable on different real-
world systems. Such models typically require special
accelerators or cloud resources, which makes them inflexible
and hard to deploy uniformly to various devices.

For scalability purposes, model compression methods,
such as weight pruning, low-bit quantization and knowledge
distillation, have been extensively employed. These are useful
to reduce the number of parameters as well as memory usage
and they enable ViTs to run on edge devices without a steep
loss in performance [2][10]. Hybrid architectures marrying
instructors of CNN with ViT units (e.g., TurboViT) provide
another potential direction for scalable solutions for low-
resource deployment [6].

5.3. Data Requirements

ViTs might need large-scale labeled data for effective
training similar to CNNss, as they do not have inductive biases
of CNNs (e.g., locality and translation invariance). Unlike
CNN, which are able to generalize well with little data, ViTs
behaves sub optimally if trained on a small dataset as it relies
on global context learning.

Typically, training ViTs from scratch entails requiring
ImageNet-sized or larger datasets. However, in specialized
domains like in medical imaging (MRI, CT, X-Ray, etc.) or
industrial vision inspection, labeled datasets are often limited
out of privacy and labeling costs, and the imbalanced
distribution of classes [1][7].

For example, in medical application, e.g., retinal disease
classification, ViTs demand thousands of fundus images that
are annotated: it means, the lack of available such images are
a concern. Likewise, in the industrial area, if trained for
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pricing defect, ViTs fail to generalize for pricing as there are
rare instance of defect in the data. To address this, researchers
make use of transfer learning (e.g. pre-training on generic
datasets and fine-tuning), data augmentation, and semi-
supervised learning. Self-supervised methods have also
demonstrated the potential of ViTs for learning
representations from un-labeled data, a critical requirement in
domains with scarce annotations [2].

Table 2 summarizes the main challenges that hinder the
deployment of Vision Transformers in practical settings.
These are computational inefficiency (quadratic self-
attention), the memory requirement of large-scale ViTs and
the large amount of labeled data required for training. The
table summarizes key points covered in this section, and can
facilitate in identifying the next steps for future development
and capacity enhancement.

Table 2. Challenges in Deploying ViTs

Challenge Description Impact
. ViTs require large Hinders real-time
High computational resources deplovment and
Computational due to the quadratic pin(}:lreases
Cost complexity of the self- . .
. . inference time.
attention mechanism.
Larger ViTs have high Limits
Scalability and memory demands and deploymgnt on
require large amounts of | edge devices or
Memory .
storage for model systems with
parameters. limited resources.
ViTs require large Makes training
difficult in data-
labeled datasets to .
Data . scarce domains,
. perform well, especially .
Requirements L . such as medical
for specialized tasks like . .
medical imaging or industrial
' fields.

In summary, Vision Transformers face three major
deployment challenges: computational inefficiency due to
self-attention, scalability issues linked to large model sizes,
and extensive data demands that restrict their applicability in
specialized fields. While recent innovations in architecture
design, model compression, and data-efficient learning have
helped alleviate these issues, continued research is essential
to make ViTs practical for widespread real-world use.

Future Directions

The field of Vision Transformers (ViTs) has seen rapid
advancements, but several areas remain ripe for exploration.
These advancements are expected to further optimize ViTs for
real-world applications across various industries. This section
highlights three major future directions for ViTs: improved
hybrid models, edge and real-time applications, and
multimodal learning.

5.4. Improved Hybrid Models

ViTs are good at capturing global context and long-range
dependencies, but the CNNs are still very efficient in dealing
with local features. The fusion of both models in hybrid
architectures offers substantial potential in terms of
performance and efficiency. Such hybrid models can provide
end-to-end best of both worlds by utilizing CNNs to extract
local patterns and ViTs to reason more completely at a higher
range, through a deep global mechanism.

Recent models have referred to this complementary
between transformers and convolutional operators, and
attempted to merge these two components to combine the best
from both sides: transformers pipelines are enriched with
convolutional layers, to better exploit input image high



resolutions and smaller computational footprints [5] [6]. As
future hybrid architectures are concerned, this combination
can be further tuned by using multi-scale attention
mechanisms to enable models process fine-grained and high-
level visual features jointly. Such advances are especially
important in semantic segmentation, object detection, and
medical image analysis, where local features are often
combined or compared to their context together.

5.5. Edge and Real-Time Applications

With the increasing demand for real-time visual processing
on IoT devices, autonomous cars and smart products, there is
an urgent requirement for ViTs that can work with limited
computation and memory resources. At present, the large
resource consumption of ViTs makes them inapplicable to
edge computing.

Further gains will rely on optimizing ViTs for low-latency,
high-throughput inference. Compression and optimization
approaches such as pruning, quantization, and low-bit
approximation (e.g., Posit Arithmetic) will be needed to
minimize the model size and computational cost, while
preserving the accuracy [4]. Furthermore, dynamic pruning
approaches may adjust model complexity according to input
difficulty, in an attempt to achieve maximum efficiency in
input-rich scenarios.

Edge-specific approaches, including using FPGAs and
ASICs, could also increase the deployability of ViTs on non-
GPU devices. Hybrid models like TurboViT, which trade-off
on CNN efficiency versus transformer expressiveness, could
serve as a key ingredient towards latency-sensitive
applications, such as autonomous navigation, AR/VR, and
robotic control [6].

5.6. ViT in Multimodal Learning

Vision Transformers are also expected to have great
potentials in multimodal learning, which learns from
information in multiple modalities, such as images, texts and
audios, to construct more intelligent systems. As such, ViTs
are inherently compatible with other transformer models in
the context of language processing.

Figure 3 depicts a Multimodal architecture, which is
similar to the ones in ViT and a language model here is also
processing text data. The outputs are then fused for tasks such
as image captioning, visual question answering (VQA), and
image-text retrieval.

Textual Data
Image / Video Text Descriptions

S Z

Vision Transformer with
Multimodal Fusion
Image + Text

Visual Data

Final Output
e.g., Caprioning, VQA

Fig.3 Multimodal Learning Example (ViT + Text)

Other systems such as CLIP and DALL-E have empirically
shown the utility of integrating the two modalities by training
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them on image-text pairs in large-scale dataset. Extensions in
other directions could involve further tying of ViTs to
language models (such as BERT and GPT), with joint training
and more precise semantic reasoning.

Also, in addition to text, ViTs can even be included into
multisensory systems with audio, video, and sensor data,
which can be particularly well-suited for autonomous driving
and smart surveillance which require sensing and
understanding the world

6. Conclusion

In this paper, we have delved into the strong power of
Vision Transformers (ViTs) in computer vision. The reason
for it is that ViTs outperform normal Convolutional Neural
Networks (CNN) in both aspects of getting global context and
modeling long-range dependencies in images. Complemented
by their effectiveness in diverse applications e.g., image
classification, object detection, semantic segmentation, and
medical image analysis, where they have yielded state-of-the-
art performance.

But, the use of ViTs in real-world scenarios has some issues.
The quadratic complexity of the self-attention module and
high memory cost make ViTs difficult to apply in low-
resource models. Whats more, their success requires large
annotated data, which is not always available in narrow-class
tasks such as medical image analysis and industrial detection.

In order to address these challenges, novel approaches have
been proposed, including model compression techniques,
hybrid CNN-VIiT architectures and adaptive models which
can smoothly adapt their complexity to the input. These
developments are making ViTs more applicable to real-time
tasks and edge computing environment.

In the future, we expect ViTs to have a much wider and
increasing effect on computer vision and Al. The continued
development of hybrid modeling and data-efficient training
will continue to make them applicable on low power devices.
In parallel, their incorporation within multimodal learning
pipelines (jointly leveraging textual and visual inputs) will be
instrumental in building more intelligent and context-aware
Al systems.

As ViTs advance, they are likely to have a revolutionary
impact on autonomous applications, instantaneous decision-
making as well as Al-based products in fields ranging from
healthcare and transportation to manufacturing. With
continuous research and development, Vision Transformers
will be one of the building blocks for future computer vision
and artificial intelligence.
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