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Abstract: Vision Transformers (ViTs) have become a strong substitute to Convolutional Neural Networks (CNNs) in computer 
vision, providing a new method to learn global dependencies using self-attention operations. This survey paper provides an in-
depth analysis of the development, application, optimization, and deployment difficulties of ViT models. We begin by reviewing 
the evolution of ViTs from their base architecture, and its subsequent adaptations to newly developed versions, including hybrids 
with CNNs and multi-scale attention. We then investigate the applications of ViTs such as image classification, object detection, 
segmentation, depth estimation, medical image analysis, and industry vision inspection. Methods to enhance ViT efficiency—
such as model pruning/quantization, hybridization with CNNs, and dynamic adaptation—are extensively discussed. However, 
ViTs also have significant limitations including computational complexity, scaling and data challenges. Spatial Usage of Scratch 
Programming Blocks Some potential solutions and future directions are addressed, such as deploying the work on edge device 
and inclusion in multimodal learning systems. Synthesizing knowledge from recent literature, this paper provides a 
comprehensive overview of the trends that have developed and six paradigms that currently exist for ViTs in computer vision. 
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1. Introduction 
The rise of Vision Transformers (ViTs) represents a 

significant shift in the computer vision domain powered by 
the progress in deep learning and the transformative potential 
of transformer-based architectures. In the past, Convolutional 
Neural Networks (CNN) have been leaders in the widespread 
application of computer vision, using their capabilities for 
strong local feature representations and hierarchical 
structures. Nevertheless, such models were not sufficient to 
learn longer range dependencies and capture the global 
context in images. While ViTs superior performance to CNNs 
on multiple benchmarks [1][2] is a strong reason for this trend, 
the fact that ViTs make use of self-attention to model global 
features from a network of image patches provides a 
compelling reason for their adoption in the medical-imaging 
sphere. 

The Vision Transformer is first proposed by Dosovitskiy et 
al. in 2020 [3]. At their core, ViTs are inspired by transformers, 
proposed for NLP tasks and noted for their capacity to model 
interdependencies among all tokens in a sequence. The ViT 
concept is to chunk up an image into a sequence of patches of 
fixed size, flatten them, and run (the flattened patches) 
through a stock transformer encoder. This architecture allows 
ViTs to model long-range spatial dependencies which is 
harder for CNNs to handle sensibly. To add, the self-attention 
mechanism applied in transformers allows ViTs to consider 
relevant regions of the whole image rather than the local ones, 
and as a result, it has been proven that ViTs can manage 
complex image structures with global relationships [1][2]. 

However, the practical deployment of ViTs encountered 
non-neglectable bottlenecks first. One major drawback was 
the high computational cost, especially because of the 
quadratic time complexity in the self-attention mechanism. 
That made ViTs less compatible to low-power devices and 
real-time applications [4][5]. Additionally, ViTs have many 
parameters and need huge number of labeled examples to 
work effectively, which is may hard for generalization in such 

a field where annotated data are not available in abundance 
[1]. 

In order to break these limitations, the latter years showed 
a trend towards developing ViTs for efficiency and scalability. 
Strategies to mitigate the computational cost by applying 
techniques such as knowledge distillation, pruning, 
quantization, low-bit quantization (such as Posit arithmetic), 
and hybridization with CNNs have been used while retaining 
the accuracy at a more controlled level [6][7]. Hybrid 
approaches such as Turbo ViT and Swin Transformer tries to 
integrate the local modeling strengths of a CNN with the 
global reasoning capabilities of a ViT. 

These architectural and algorithmic enhancements have 
allowed ViTs to progress from being academic baselines to 
practical use cases. Today we are seeing ViTs being utilized 
in a variety of computer vision tasks such as: image 
classification, object detection, semantic segmentation, depth 
estimation and so on. Especially in the application domain of 
medical image analysis as well as industrial inspection, ViTs 
have been shown to be particularly successful, more powerful 
than traditional CNNs in tasks such as fundus image 
classification for retinal disease [1][8]; and defect detection 
in manufacturing lines. 

With the development of the field, ViTs are starting to be 
applied for edge computing and embedded systems using 
lightweight architectures and dynamic processing approaches. 
With the multimodal systems -- combining visual and textual 
information -- these are more general as components in next-
generation AI solutions, such as self-driving cars, health 
diagnostics and robotics [6][7]. 

In this review article, we provide a comprehensive 
summary on the state of the art on the progress, applications, 
optimizations, challenges, and perspectives of Vision 
Transformer models in computer vision. Drawing on insights 
from pas research, we analyze how ViTs have evolved, their 
comparative advantages over CNNs, and how they are being 
adapted to meet the growing demands of modern AI 
applications. 



 

24 

2. Evolution of ViTs: The Journey 
from CNNs to Vision Transformers 

Vision Transformers (ViTs), proposed by Dosovitskiy et al. 
in 2020 [3], was a game changer in the world of computer 
vision. Until that moment, Convolutional Neural Networks 
(CNNs) were the norm as they are powerful in modeling local 
hierarchical information. However, CNNs encountered 
difficulty in modeling long-range spatial dependencies and 
global context in images. ViTs bridged this gap by utilizing 
self-attention mechanisms that were developed for processing 
natural language, so it could be used on visual input. 

2.1. The Birth of Vision Transformers 
Original Vision Transformer (ViT) model introduced by 

Dosovitskiy et al. (2020) [3] profoundly changed the way in 
which deep learning models processed images. So instead of 
running convolutional layers over images to capture local 
features, ViT split an image up into non-overlapping patches, 
flattened them and fed them into a model as a sequence of 
tokens, just like words in an NLP model such as BERT. 
Subsequently, these tokens were fed to the transformer 
encoder, which employed self-attention to model the 
dependency between patches that encode not only the local 
information, but could also capture, to some extent, global 
context within the image [5][9].  

This enabled ViTs to address the shortcoming of CNNs in 
reasoning over relationships between distant parts of an image, 
and to be particularly well suited for tasks with global context 
being important, such as image classification and object 
detection. In their original work, the authors showed that ViTs 
could match or even outperform classical CNN architectures 
such as ResNet and VGG on large-scale image recognition 
tasks such as the ImageNet classification benchmark [10]. 
Nevertheless, even with these achievements, ViTs were inн 
computationally expensive as a result of the self-attention 
operation. The operation complexity of the processing of an 
image increased by the square against the number of the 
patches, which made the ViTs difficult to apply to the 
resource-limited devices like a mobile phone and an 
embedded system [4][5]. 

2.2. The Rise of Efficient Vision Transformers 
To overcome the challenges of these computationally-

intensive ViTs, researchers have already started investigating 
different approaches to make them efficient without 
compromising performance. Among the first kind of methods 
were those that made changes to the structure of the ViT itself. 
As an example, the Data-efficient Image Transformer (DeiT) 
from Touvron et al. (2021) [10] were able to reduce the 
amount of data required for training ViTs by using methods 
like knowledge distillation. In this configuration, a smaller 
“student” model learned to behave as a larger “teacher” model, 
allowing the student to perform well on limited data [2]. 

Two hybrid architectures were introduced which were 
designed to gain benefits of both CNNs and ViTs. Hybrid 
models e.g., Swin Transformer [5] included visualizing the 
local region using convolutional layers in the beginning, then 
represented the entire input using the transformer layers. This 
paradigm made full use of the advantages of CNN in local 
features extraction and ViT in modeling global context. Such 
hybrid approaches have shown better performance in various 
tasks such as semantic segmentation and object detection in 
which both local and global information is important [4] [7]. 

Efficiency search also inspired other techniques such as 
pruning, quantization and low-bit encoding. Techniques like 
pruning aim at reducing the size of the model by cropping 
unimportant parameters, while quantization drops the 
precision of the model’s weights and activations in order to 
speed up the inference while still retaining a small drop in the 
overall performance. Low-bit encoding (e.g., with Posit 
Arithmetic [4] has been shown to dramatically reduce the 
computing requirements of ViTs and low-hardware-resources 
devices can utilize this to deploy ViTs [2][7]. 

2.3. The Evolution of ViT Variants and 
Architectures 

Multiple versions of ViT have since been proposed to 
address various problems and to beat other architectures on 
specific tasks. An example of such a model is the Shifted 
Window Transformer (Swin) by Liu et al. (2021) [5] that 
proposes a family of hierarchical attention mechanisms to 
reduce the computational complexity of self-attention by 
limiting it in smaller windows. This offers not only an 
efficient embedding of molecular features, but also enables to 
capture both local and global features for the model to be used 
for, e.g., object detection and image segmentation [2][4].  

Recent works in the ViT domain also involve Tokens-to-
Tokens Vision Transformer (T2T-ViT) [11] to improve 
tokenization procedure for meticulous image-representation, 
LeViT [12] for combination of the CNN and ViT power to 
form a compute-efficient model for the real time applications 
[6][7]. 

2.4. ViTs in Specialized Domains 
In addition to the conventional computer vision problems, 

ViTs have been applied in more specific fields, such as 
medical imaging and industrial visual inspection. In medical 
imaging, ViTs have demonstrated robust results in clinical 
tasks such as the classification of fundus images for retinal 
diseases diagnosis [7], evidencing the potential of ViTs to 
model subtle patterns within medical images, a purpose that 
was difficult to achieve using CNN-based methods. Also, 
regarding industrial visual inspection, ViTs have been used to 
defect detection and quality control, performing better than 
CNNs in difficult situations when the amount of data is 
insufficient [1]. 

2.5. Future Directions 
Vision Transformers are still far from mature. New 

opportunities for further enhancement of them focusing on 
more efficiently, scalability, and applicability to real-time 
systems are being explored by researchers. Hybrid models 
that integrate CNNs and ViTs are also an attractive direction, 
since they strike a balance between local feature extraction 
and global context modeling. Moreover, improvement of 
quantization and pruning are anticipated to increasingly fine-
tune ViTs for edge deployment, which will reduce the entry 
threshold for various applications [4][6]. 

In summary Arising from this work, the emergence of ViTs 
is a paradigm and game changer for the computer vision 
community, providing new modalities for modeling long-
articulated global context in images. And although issues 
concerning computational efficiency persist, the promising 
advancements are starting to make ViTs more feasible for 
applications and have potential to be applied across diverse 
domains including healthcare, autonomous driving, or 
manufacturing [9][10]. 
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3. Applications of Vision Transformers 
(ViTs) in Computer Vision 

Vision Transformers (ViTs) have attracted considerable 
interest in the computer vision community because of their 
capacity to capture fine-grained dependencies in images by 
utilizing the transformer architecture created for natural 
language processing. The new direction for using ViTs to 
solve different computer vision tasks (such as image 
classification, object detection, segmentation, 3D visions, 
industrial applications and medical images) has been opened. 
This section discusses how ViTs have been used successfully 
for these tasks, and contrasts them with CNN-based 
approaches. 

 
Fig.1 Applications of ViTs in Computer Vision 

Figure 1 shows a variety of computer vision tasks in 
different categories, to which ViTs have been successfully 
linked. From baseline tasks like image classification and 
object detection to more specialized applications in fields like 
medical imaging and industrial inspection, the diagram gives 
an overview of ViTs’ increasing impact across various 
domains 

3.1. Image Classification 
Image classification is still one of the most significant and 

successful applications of ViTs. Considered related work, the 
concept of deep learning in computer vision datasets 
positioned CNNs as deep learning models. Traditional work 
is that deep learning model would be used as traditional 
architecture standardization. However, modeling long-range 
dependencies is one of the weaknesses of CNNs and they are 
not effective when the task demands a holistic analysis of the 
image content. This is what ViTs aim to tackle, by first 
treating an image as a sequence of patches and by then using 
self-attention to model global relationships between all 
patches in the sequence. This global attention mechanism 
allows ViTs to model long-range dependencies, which is 
better performance particularly when global context is 
important. 

ViTs have achieved impressive performance on benchmark 
datasets like ImageNet, showing that the models are effective 
for image classification. For instance, Dosovitskiy et al. (2020) 
[3] demonstrated that ViTs were competitive with the state of 
the art canned CNN models (like ResNet and VGG) on large 
scale classification. However, ViTs are computation hungry 
and introduce deployment issues in resource-starved 
platforms. Efficient variants have been developed that address 
these challenges. The DeiT (Data-efficient Image 
Transformer) proposed in Touvron et al. (2021) [10], utilizes 
knowledge distillation-based learning, in which a smaller 

student model learns from a larger teacher model, in an 
attempt to be less wasteful of data while not losing in 
performance. Also, the Swin Transformer [5] adopts a two-
level attention mechanism that restrains self-attention to local 
windows and keeps windows connected across scales. This is 
way in which computational efficiency is achieved without 
sacrificing the capability to adequately model presence and 
absence of both local and global features. 

Table 1 shows a comparative summary of ViTs with 
traditional CNNs in the aspect of image classification, 
comparing the performance, computation cost, data efficiency, 
as well as local and global feature representation. This 
comparison highlights the increasing usage of ViT in large-
scale classification tasks, but also demonstrates the persistent 
importance of CNN in this task when efficiency and easy 
deployment is concerned. 

Table 1. Comparison of ViTs with CNNs 

Attribute ViTs CNNs 

Performance 

(Accuracy) 

High, especially 

for large datasets 

(e.g., ImageNet) 

Good, often 

slightly lower than 

ViTs in complex 

tasks 

Computational 

Cost 

High (quadratic 

complexity in self-

attention) 

Lower (local 

receptive field and 

hierarchical 

structure) 

Memory 

Requirements 

High (larger 

models and 

parameters) 

Lower (smaller 

number of 

parameters) 

Global 

Context 

Excellent 

(captures long-

range 

dependencies) 

Limited (focus 

on local patterns) 

Application 

Flexibility 

Highly flexible 

in tasks requiring 

global context 

Effective for 

tasks with local 

dependencies 

Data 

Requirements 

High (needs 

large datasets to 

perform well) 

Moderate (works 

well with smaller 

datasets) 

In summary, Vision Transformers are a strong candidate for 
image classification, outperforming classical CNN 
approaches in terms of accuracy on large-scale data, while 
recent works such as DeiT and Swin Transformer have 
optimized them in a way that makes them performant enough 
for applications. 

3.2. Object Detection and Segmentation 
Apart from the image classification task, ViTs have also 

demonstrated excellent performance on object detection and 
semantic segmentation tasks, which are object-level 
recognition tasks and involve not just recognizing objects but 
also localizing and delimiting objects inside an image. ViTs 
have the advantage in these tasks, as they can capture global 
dependencies and long-range communications. 

DETR Detection Transformer is one of the pioneering 
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works that employs ViTs to object detection using 
transformers directly, removing the need for hand-crafted 
region proposals. DETR obviates the requirement of 
designing handcrafted RPNs in conventional CNN-based 
detectors by formulating object detection as direct set 
prediction. The trained model adopts the transformer encoder-
decoder architecture to generate a fixed set of objects, which 
employs global self-attention mechanism to model 
interactions between all image regions. This allows DETR to 
better handle challenging scenes (such as scenes with small 
or overlapping objects) than classical approaches such as 
Faster R-CNN. 

In semantic segmentation, where the task is to label every 
pixel into a class, ViTs are just as capable. Its capability to 
draw information from an input image results in a more 
connected and accurate segmentation. For example, the Swin 
Transformer adopts a hierarchical structure with windowed 
attentions which is able to capture local and global features 
efficiently. It has been demonstrated that it is superior than the 
State-of-the-art CNN-based models such as U-Net, 
particularly in high-resolution tasks such as medical image 
segmentation [5]. This feature of ViTs makes them especially 
well-suited for tasks that require fine-grained pixel-wise 
predictions. 

Both object detection and segmentation task benefited from 
the top-down hierarchy design of ViTs, which allows local 
and global information to be incorporated in a natural way, 
and are thus particularly well-suited to tasks with intricate 
spatial dependencies. 

3.3. Depth Estimation and 3D Vision 
Another application area with strong impact for ViTs is 

depth estimation or predicting the distance of objects from a 
single image. CNNs usually fail to model the entire scene 
structure, which is essential for accurate depth prediction, in 
particular for cluttered and occluded areas. 

Global attention mechanisms in Vision Transformers 
provides a better solution. Ibrahem et al. (2022) [9] proposed 
a lightweight ViT model for real-time monocular depth 
estimation, which is a good trade-off between accuracy and 
speed. Their encoder-decoder architecture based on ViT 
produced high-quality depth maps with realtime performance 
at around 20 FPS. This favorable feature of ViTs makes them 
suitable for scenarios like auto-driving and robotics which 
require fast and accurate depth perception. 

ViTs are also promising for other 3D vision tasks such as 
3D reconstruction and Scene understanding. Their spatial 
relationships modelling with the whole image could provide 
deeper context-aware and more accurate depth predictions, 
promoting 3D system towards dynamic scene satisfaction. 

3.4. Industrial Applications 
In industrial environments, visual inspection is of upmost 

importance in quality control, defect detection, and predictive 
maintenance. Conventional systems—frequently built on 
CNNs or human examination—may not be efficient, 
especially in processing massive, complex input data or subtle 
outliers. Recent works have also attracted much interest in 
ViTs, which provide an alternative due to their global 
reasoning ability. For instance, Hütten et al. (2022) [1] 
leveraged ViTs on railway freight car maintenance to 
diagnose defects in metal and wooden structures. They were 
able to outperform CNNs in detecting cracks and scratches by 
capturing the presence of both fine details and context from a 

larger image area. To improve speed and efficiency, hybrid 
models, such as TurboViT, have also been proposed. At the 
intersection of CNN efficiency and ViT contextual awareness, 
these models would be suitable for real-time industrial use [6]. 
With efficient computation without accuracy compromise, 
these models also enable rapid and robust inspections in 
sectors such as automotive, manufacturing and transportation. 

3.5. Medical Image Analysis 
Last but not least, the most important field for applying 

Vision Transformers is medical image analysis. ViTs have 
proven to be highly valuable also in the medical image 
computing research, such as interpreting subtle visual cues is 
important for correctly diagnosing diseases. Compared to 
CNNs that can concentrate on limited local features, ViTs 
have a more global view since they model the entire context 
of the image, an important feature in disease detection and 
diagnosis. 

One prominent application is in fundus image classification 
used for diagnosing retinal disease. Bi et al. (2023) [7] 
proposed MIL-ViT, which combines multiple instance 
learning with ViTs. This model is very good at recognizing 
subtle, scattered signs of conditions like diabetic retinopathy 
and glaucoma. MIL-ViT can jointly learn global and local 
representations, which helps to obtain better classification 
results, compared with CNNs. 

Besides for classification, to address the problem of 
medical segmentation and lesion detection, input context with 
small anomalies to accurate boundary line is crucial. 

As they are able to capture long-range and finely detailed 
features [1], they are advantageous in spatially precise 
predictions. 

Vision Transformers have shown wide coverage and strong 
performance in different computer vision problems. From 
image-level to object-level, and from the industrial visual 
inspection to medical image analysis, the ViTs can offer an 
alternative solution to many challenges faced by the 
conventional CNN-based methods. They are able to represent 
long-range dependencies and capture global context, so they 
are excellent for modeling problems with complex spatial 
interactions. With more and more investigation of ViT and 
constant structure optimization by replacing, incremental and 
integration, ViTs territo ry in computer vision will be greatly 
expanded. 

4. Techniques to Improve ViT 
Performance 

Vision Transformers (ViTs) have shown great potential in 
computer vision with their capacity to model long-range 
dependencies and encode global context. However, they are 
computationally expensive, and memory demanded will 
hinder their applications in practice, particularly on devices 
of limited resources. This part presents few major tactics that 
have been suggested for improving the ViT efficiency and 
practicality Key techniques to improve ViT efficiency, 
Efficiency improvements, Hybrid models and 
dynamic/adaptive architectures. 

4.1. Efficiency Enhancements 
A primary limitation of ViTs is their high computational 

cost, mainly due to the self-attention mechanism whose 
complexity scales quadratically with the number of image 
patches. Addressing this requires strategies that maintain 
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performance while reducing computational demands. 
4.1.1. Low-bit Encoding  

Low-bit encoding, like Posit Arithmetic, has potential to be 
a solution. ViTs such as traditional run on 32- or 64-bit 
floating point representations which consumes a significant 
amount of memory and processing capability. On the other 
hand, Posit Arithmetic uses a smaller number of bits to encode 
parameters, which can reduce model size and the amount of 
energy consumption while maintaining accuracy [4]. It 
enables high precision even for very low bit-width values 
compared to other standard binary formats. Applying this 
treatment to ViTs results in faster computation and lower 
memory requirements, enabling deployment to embedded and 
mobile devices. 
4.1.2. Model Compression Techniques 

Pruning is an alternative solution that involves eliminating 
unnecessary parameters or connections in the model. Number 
of operations is reduced with no loss in latency. This is part 
of what makes ViTs more lightweight, and suitable for real-
time applications [6]. In addition, knowledge distillation 
enhances efficiency by training a smaller “student” model to 
emulate the output of a larger “teacher” model. This method 
ensures that compact ViTs are able to achieve high accuracy 
with less computational resources. One such example is Data-
efficient Image Transformer (DeiT) that employ distillation to 
lower the requirement for train-ing data Whilst obtaining 
competitive results [10]. 

These efficiency improvement methods, such as Posit 
Arithmetic, pruning and distillation, are essential in order to 
make ViTs more practical in places where resources are 
limited, such as mobile, autonomous, and on the edge devices. 

4.2. Hybrid Models 
Although ViTs are good at modeling global dependencies, 

they are not as effective in learning local image 
representations. Joint ViT and CNN models aim to tackle this 
problem by taking advantage of the local feature extraction 
offered by CNNs and the global attention mechanisms of ViTs.  

Figure 2 shows yet another hybrid model that combines 
CNN layers to capture local features quickly, done so before 
transformer layers that capture long-range dependencies. This 
architecture strikes a balance between efficiency and 
performance and mitigates the shortcomings of standalone 
ViTs. 

TurboViT is one of such hybrid models that hybridize CNN 
based operations with transformer attention to effectively 
capture local and global features [6]. To reduce complexity, 
TurboViT adds a mask unit attention mechanism and uses Q-
pooling, which can obtain more than 2.4x the model size 
reduction and 3.4x fewer FLOPs than FasterViT with small 
degradation in accuracy, making it suitable for real-time and 
edge scenarios.  DMFormer [13] further fuses DMA with 
convolution layers for multi-scale feature representation. The 
model is based on multi-kernel size and dilation convolution 
which helps the model learn features at different levels of 
resolution and shows a better performance in both image 
classification and segmentation. 

Such hybrid models combine the advantages of CNNs and 
ViTs and could lead to more effective and efficient 
architectures. It combines the local receptive field in CNNs 
and global context modeling capability of ViTs, leading to 
accurate and efficient performance as compared with ViTs 
and CNNs alone methods. 

 
Fig.2 Techniques to Improve ViT Performance 

4.3. Dynamic and Adaptive Models 
Models that vary the complexity for an input data are often 

needed in practical applications. In ViTs the analogue 
involves functionally altering the number of attention heads, 
layers or patch resolution according to task difficulty. These 
models increase computational efficiency but maintain 
efficacy. 

MIA-Former is a type of dynamic ViT architecture for 
adaptive computation according to the image complexity [14]. 
It uses a Focus and Forget paradigm to turn on more 
transformer layers for complex images and fewer for easier 
ones. This flexibility enables MIA-Former to balance 
computation and accuracy, which is particularly favorable for 
real-time inference and edge deployment.it has been noted 
that these are particularly interesting models for edge 
computing, given the constrained resources there. By 
adapting complexity to input needs, adaptive ViTs can 
accommodate smaller models without sacrificing 
performance [15]. 

In conclusion, dynamic models such as MIA-Former, as 
well as efficiency methods (pruning, quantization, and KD) 
and hybrid architectures (e.g., TurboViT and DMFormer) are 
instrumental in making ViTs ready for real-world applications, 
ranging from health to automation, with more to come in the 
future. 

5. Challenges in Deploying Vision 
Transformers (ViTs) 

Despite their strong performance in computer vision tasks, 
Vision Transformers (ViTs) face several challenges when 
transitioning from research to real-world deployment. Key 
challenges include high computational demands, limited 
scalability due to memory constraints, and the need for large 
labeled datasets. 

5.1. High Computational Cost 
The quadratic computational complexity of the self-

attention mechanism is one of the major challenges Vision 
Transformers (ViTs) have to deal with. In ViTs, an image is 
broken down into fixed-size patches, and every patch attends 
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to all other patches in the image. This leads to a computation 
complexity growing quadratically with the number of patches, 
which causes the model to be highly resource-hungry when it 
is applied to high-resolution images [3]. 

Such computation overheads may seriously limit the wide-
distribution of ViTs in practical real-time applications e.g., 
autonomous driving, robotic, video surveillance, which 
requires low latency and high throughput. Even with enabling 
the use of strong GPUs / TPUs achieving an acceptable real-
time performance could be difficult, especially when you 
work in an edge / mobile environment. In this scenario, model 
quantization has become a promising approach, compressing 
the computational complexity by lowering the precision of 
operations, such that reduced computational, and memory 
overhead can be demanded, and having little impact on other 
factors. 

To mitigate this, approaches like local self-attention (as in 
Swin Transformer) reduce complexity by restricting attention 
to small windows. In addition, model pruning, quantization, 
and knowledge distillation (e.g., DeiT) have been used to 
reduce the FLOPs while maintaining the performance [4][5]. 
However, even with these efficiencies, self-attention remains 
the primary computational bottleneck in using ViTs. 

5.2. Scalability and Memory Constraints 
Another drawback is that ViTs scalability is not well -

established, especially in terms of large models memory 
footprint and compute requirements. For instance, ViT-H/14 
has more than 632 million parameters, needing 2528 MB 
memory and 162 GFLOPs per inference [5]. This makes it 
inapplicable to memory-limited scenarios, including 
embedded devices and mobile phones. 

Big ViTs achieve better accuracy, but they are 
computationally heavy and not deployable on different real-
world systems. Such models typically require special 
accelerators or cloud resources, which makes them inflexible 
and hard to deploy uniformly to various devices. 

For scalability purposes, model compression methods, 
such as weight pruning, low-bit quantization and knowledge 
distillation, have been extensively employed. These are useful 
to reduce the number of parameters as well as memory usage 
and they enable ViTs to run on edge devices without a steep 
loss in performance [2][10]. Hybrid architectures marrying 
instructors of CNN with ViT units (e.g., TurboViT) provide 
another potential direction for scalable solutions for low-
resource deployment [6]. 
5.3. Data Requirements 

ViTs might need large-scale labeled data for effective 
training similar to CNNs, as they do not have inductive biases 
of CNNs (e.g., locality and translation invariance). Unlike 
CNN, which are able to generalize well with little data, ViTs 
behaves sub optimally if trained on a small dataset as it relies 
on global context learning. 

Typically, training ViTs from scratch entails requiring 
ImageNet-sized or larger datasets. However, in specialized 
domains like in medical imaging (MRI, CT, X-Ray, etc.) or 
industrial vision inspection, labeled datasets are often limited 
out of privacy and labeling costs, and the imbalanced 
distribution of classes [1][7]. 

For example, in medical application, e.g., retinal disease 
classification, ViTs demand thousands of fundus images that 
are annotated: it means, the lack of available such images are 
a concern. Likewise, in the industrial area, if trained for 

pricing defect, ViTs fail to generalize for pricing as there are 
rare instance of defect in the data. To address this, researchers 
make use of transfer learning (e.g. pre-training on generic 
datasets and fine-tuning), data augmentation, and semi-
supervised learning. Self-supervised methods have also 
demonstrated the potential of ViTs for learning 
representations from un-labeled data, a critical requirement in 
domains with scarce annotations [2]. 

Table 2 summarizes the main challenges that hinder the 
deployment of Vision Transformers in practical settings. 
These are computational inefficiency (quadratic self-
attention), the memory requirement of large-scale ViTs and 
the large amount of labeled data required for training. The 
table summarizes key points covered in this section, and can 
facilitate in identifying the next steps for future development 
and capacity enhancement. 

Table 2. Challenges in Deploying ViTs 

Challenge Description Impact 

High 
Computational 

Cost 

ViTs require large 
computational resources 

due to the quadratic 
complexity of the self-
attention mechanism. 

Hinders real-time 
deployment and 

increases 
inference time. 

Scalability and 
Memory 

Larger ViTs have high 
memory demands and 

require large amounts of 
storage for model 

parameters. 

Limits 
deployment on 
edge devices or 

systems with 
limited resources. 

Data 
Requirements 

ViTs require large 
labeled datasets to 

perform well, especially 
for specialized tasks like 

medical imaging. 

Makes training 
difficult in data-
scarce domains, 
such as medical 

or industrial 
fields. 

In summary, Vision Transformers face three major 
deployment challenges: computational inefficiency due to 
self-attention, scalability issues linked to large model sizes, 
and extensive data demands that restrict their applicability in 
specialized fields. While recent innovations in architecture 
design, model compression, and data-efficient learning have 
helped alleviate these issues, continued research is essential 
to make ViTs practical for widespread real-world use. 

Future Directions 
The field of Vision Transformers (ViTs) has seen rapid 

advancements, but several areas remain ripe for exploration. 
These advancements are expected to further optimize ViTs for 
real-world applications across various industries. This section 
highlights three major future directions for ViTs: improved 
hybrid models, edge and real-time applications, and 
multimodal learning. 

5.4. Improved Hybrid Models 
ViTs are good at capturing global context and long-range 

dependencies, but the CNNs are still very efficient in dealing 
with local features. The fusion of both models in hybrid 
architectures offers substantial potential in terms of 
performance and efficiency. Such hybrid models can provide 
end-to-end best of both worlds by utilizing CNNs to extract 
local patterns and ViTs to reason more completely at a higher 
range, through a deep global mechanism. 

Recent models have referred to this complementary 
between transformers and convolutional operators, and 
attempted to merge these two components to combine the best 
from both sides: transformers pipelines are enriched with 
convolutional layers, to better exploit input image high 
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resolutions and smaller computational footprints [5] [6]. As 
future hybrid architectures are concerned, this combination 
can be further tuned by using multi-scale attention 
mechanisms to enable models process fine-grained and high-
level visual features jointly. Such advances are especially 
important in semantic segmentation, object detection, and 
medical image analysis, where local features are often 
combined or compared to their context together. 

5.5. Edge and Real-Time Applications 
With the increasing demand for real-time visual processing 

on IoT devices, autonomous cars and smart products, there is 
an urgent requirement for ViTs that can work with limited 
computation and memory resources. At present, the large 
resource consumption of ViTs makes them inapplicable to 
edge computing. 

Further gains will rely on optimizing ViTs for low-latency, 
high-throughput inference. Compression and optimization 
approaches such as pruning, quantization, and low-bit 
approximation (e.g., Posit Arithmetic) will be needed to 
minimize the model size and computational cost, while 
preserving the accuracy [4]. Furthermore, dynamic pruning 
approaches may adjust model complexity according to input 
difficulty, in an attempt to achieve maximum efficiency in 
input-rich scenarios. 

Edge-specific approaches, including using FPGAs and 
ASICs, could also increase the deployability of ViTs on non-
GPU devices. Hybrid models like TurboViT, which trade-off 
on CNN efficiency versus transformer expressiveness, could 
serve as a key ingredient towards latency-sensitive 
applications, such as autonomous navigation, AR/VR, and 
robotic control [6]. 

5.6. ViT in Multimodal Learning 
Vision Transformers are also expected to have great 

potentials in multimodal learning, which learns from 
information in multiple modalities, such as images, texts and 
audios, to construct more intelligent systems. As such, ViTs 
are inherently compatible with other transformer models in 
the context of language processing. 

Figure 3 depicts a Multimodal architecture, which is 
similar to the ones in ViT and a language model here is also 
processing text data. The outputs are then fused for tasks such 
as image captioning, visual question answering (VQA), and 
image-text retrieval. 

 
Fig.3 Multimodal Learning Example (ViT + Text) 

Other systems such as CLIP and DALL·E have empirically 
shown the utility of integrating the two modalities by training 

them on image-text pairs in large-scale dataset. Extensions in 
other directions could involve further tying of ViTs to 
language models (such as BERT and GPT), with joint training 
and more precise semantic reasoning. 

Also, in addition to text, ViTs can even be included into 
multisensory systems with audio, video, and sensor data, 
which can be particularly well-suited for autonomous driving 
and smart surveillance which require sensing and 
understanding the world 

6. Conclusion 
In this paper, we have delved into the strong power of 

Vision Transformers (ViTs) in computer vision. The reason 
for it is that ViTs outperform normal Convolutional Neural 
Networks (CNN) in both aspects of getting global context and 
modeling long-range dependencies in images. Complemented 
by their effectiveness in diverse applications e.g., image 
classification, object detection, semantic segmentation, and 
medical image analysis, where they have yielded state-of-the-
art performance. 

But, the use of ViTs in real-world scenarios has some issues. 
The quadratic complexity of the self-attention module and 
high memory cost make ViTs difficult to apply in low-
resource models. Whats more, their success requires large 
annotated data, which is not always available in narrow-class 
tasks such as medical image analysis and industrial detection. 

In order to address these challenges, novel approaches have 
been proposed, including model compression techniques, 
hybrid CNN-ViT architectures and adaptive models which 
can smoothly adapt their complexity to the input. These 
developments are making ViTs more applicable to real-time 
tasks and edge computing environment. 

In the future, we expect ViTs to have a much wider and 
increasing effect on computer vision and AI. The continued 
development of hybrid modeling and data-efficient training 
will continue to make them applicable on low power devices. 
In parallel, their incorporation within multimodal learning 
pipelines (jointly leveraging textual and visual inputs) will be 
instrumental in building more intelligent and context-aware 
AI systems. 

As ViTs advance, they are likely to have a revolutionary 
impact on autonomous applications, instantaneous decision-
making as well as AI-based products in fields ranging from 
healthcare and transportation to manufacturing. With 
continuous research and development, Vision Transformers 
will be one of the building blocks for future computer vision 
and artificial intelligence. 
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