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Abstract: This paper proposes a novel Entropy-Constrained and Sparse Relation-Constrained Subspace Clustering (ECSSC). 
By integrating information entropy weighting with sparse representation, the proposed method enhances both the accuracy and 
robustness of high-dimensional data clustering. Key improvements include: the introduction of an information entropy weight 
matrix to quantify feature discriminability and improve adaptability to noise and redundant features; the use of Frobenius norm 
constraints on the coefficient matrix to balance computational efficiency and model performance; and the incorporation of block-
diagonal constraints to refine the sparsity structure of subspaces. Experiments conducted on three image datasets—MNIST, ORL, 
and COIL20—demonstrate that EWSSC outperforms traditional methods, classical sparse subspace clustering algorithms, and 
related state-of-the-art variants in terms of clustering accuracy (ACC), normalized mutual information (NMI), and adjusted Rand 
index (ARI). Notably, on the ORL dataset, ECSSC achieved an NMI of 0.9031, representing a 6.18% improvement over Sparse 
Representation-based Clustering (SRR). Ablation studies further confirm the effectiveness of the entropy-weighting module, 
which contributes to an average performance gain of 10%–18% across different datasets. 
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1. Introduction 
With the rapid advancement of technology, explosive 

growth of data has become a common phenomenon in 
contemporary society. Massive amounts of information are 
being accumulated across various industries, ranging from 
real-time data generated by sensors to user behavior 
trajectories on social media—all flooding into real-world 
applications at an unprecedented pace and scale. However, 
this proliferation of information also presents a critical 
challenge: high-dimensional data. In traditional data analysis, 
low-dimensional data have often been preferred for modeling 
and analysis due to the formidable difficulties posed by high-
dimensional settings [1]. 

The challenges of high-dimensional data are mainly 
manifested in several aspects. Firstly, the sparsity of data 
makes it difficult for many traditional clustering algorithms to 
effectively distinguish different data clusters in high-
dimensional Spaces. Secondly, high-dimensional data is 
usually accompanied by a large amount of noise and 
redundant information, which reduces the performance of 
traditional methods and makes it difficult to extract truly 
meaningful patterns [2]. Subspace clustering emerged as a 
result. By clustering and classifying high-dimensional data, it 
achieves the purpose of separating subspaces. With its 
efficient clustering performance, it is widely applied in fields 
such as computer vision [3], speech signal processing [4], and 
unmanned driving [5], and has thus become the cornerstone 
of research hotspots. 

Subspace clustering can be roughly divided into sparse 
subspace clustering (SSC) [6,7], low-rank subspace 
clustering (LRR) [8,9], and least squares regression subspace 
clustering (LSR) [10]. All these three methods involve 
modeling and linear representation of high-dimensional data 
in subspaces, assuming that data points can be represented by 
linear combinations of other data points, and inferring the 

underlying subspace structure from the data to better 
understand the intrinsic features of the data. 

The difference lies in that SSC is dedicated to finding 
subspaces with shared similar structures in high-dimensional 
data. Its core idea is based on the sparse representation among 
data points, assuming that each data point can be linearly 
represented by others, which can reveal the underlying 
subspace structure of the data. LRR focuses on handling noise 
and outliers by representing data in a low-rank subspace, 
thereby enhancing the robustness of the data. It achieves this 
by optimizing the low-rank representation while considering 
the relationships among data points, thus better adapting to 
the noise and anomalies present in the real world. LSR 
achieves clustering by minimizing the projection error of data 
points onto subspaces. By establishing the connection 
between data points and subspaces through a regression 
model, it stands out in terms of mathematical simplicity and 
intuitiveness. 

This paper has been organized and improved based on SSC, 
drawing on the advantages of various sparse subspace 
clustering methods. Patel et al. applied the kernel function to 
the data matrix and utilized the alternating direction method 
of multipliers (ADMM) to solve the model [11], providing a 
new solution approach for subspace clustering methods. 
Against this backdrop, we further explored the application of 
orthogonal matching pursuit (OMP) as an optimization 
algorithm to find the linear combination that best represents 
the original data points [12]. Compared with other sparse 
representation methods used in SSC, OMP can more 
effectively select important subspace members, thereby 
enhancing the clustering performance. 

To better model the structure of the subspace, Li et al. 
introduced a regularization term to construct a structural 
sparse subspace clustering model (SSSC) [13]. In the research 
of subspace clustering, Haiyang Li et al. introduced the 𝑇𝑇𝑇𝑇1 
norm constraint and theoretically proved that its optimal 
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solution is a coefficient matrix with a block diagonal structure 
[14]. Lu et al. implemented the LSR algorithm again based on 
the affinity matrix obtained from LSR to remove noise, 
making the affinity matrix cleaner and more reliable [15]. At 
the same time, the augmented Lagrangian multiplier method 
(ALM) was used to solve the objective function, further 
improving the robustness of sparse subspace clustering. 

To further explore the intrinsic structure of the data, WEI 
et al. performed second-order self-representation on the 
original data to obtain the reconstruction coefficient matrix, 
and introduced a new regularization term to construct the 
model (SRR) [16], which was used to construct the similarity 
matrix and perform clustering. Huizhi Hu et al. based on the 
SRR model to construct a new regularization term to enhance 
the sparsity and discriminability of the representations of 
different types of data [17]. 

Overall, the improvements to the subspace clustering 
algorithm mainly focus on the weighting or reconstruction of 
the coefficient matrix, the addition of new regularization 
terms, the improvement of norm constraints or the solution 
algorithm. In this paper, a weight matrix is introduced based 
on the structured sparse subspace [18]. Considering that in 
practical applications, different variables may have different 
importance for the clustering task, if they are not 
distinguished, suboptimal results will be obtained. In addition, 
there may be noisy variables in the data set, which will 
interfere with the accuracy of the clustering results. If the 
weight of these variables can be reduced, it will also have a 
certain gain on the clustering effect. 

In this improvement direction, the GSSC method proposed 
by Tao Li et al. emphasizes the importance of sparse 
constraints through the weighting of Gaussian similarity [19], 
making the data more inclined to be linearly represented by 
the most similar data, and thus being independent of the 
dissimilar data. This idea of weighted sparse subspace 
clustering has brought a significant improvement in clustering 
performance. The 3DF-SSC method similar to GSSC was 
proposed by ZHANG et al. [20], by integrating the three-
dimensional spectral features weights of hyperspectral 
images into the sparse subspace model, further expanding the 
application fields. The SWSSC algorithm proposed by 
Wenzhou Li et al. uses the Euclidean clustering of pixels to 
calculate the similarity matrix and determine the weight 
matrix [21]. However, due to the high dimensionality of the 
data, the weight effect based on Euclidean clustering may be 
limited. Yonghong Long et al. introduced an information 
entropy-based weighted matrix as the penalty term of the 
sparse coefficient matrix according to the characteristics of 
pixel data in hyperspectral remote sensing images [22], 
promoting the linear representation of pixels in the same class, 
thereby improving the classification accuracy. 

This paper begins in Section 1 by introducing the 
background and development of sparse subspace clustering. 
Section 2 presents the related work before model 
establishment. Section 3 builds the model based on the idea 
of information entropy weighting and the coupling constraint 
of sparse representation, and solves it using the alternating 
direction method of multipliers. Section 4 applies MNIST, 
ORL, and COIL20, and conducts ablation experiments 
according to relevant evaluation criteria. Section 5 
summarizes the entire paper. 

2. Related Work 
2.1. Subspace clustering via structured sparse 

relation representation 
During the data processing process, the original data is 

usually affected by noise and other disturbances. Directly 
performing self-representation on the original data to obtain a 
similarity matrix is prone to be influenced by noise and 
interference, resulting in an inability to accurately reflect the 
true subspace relationship of the data, thereby causing data 
misclassification. To solve this problem, Subspace clustering 
via structured sparse relation representation (SRR [16]) 
adopts a second-order self-representation strategy: Firstly, the 
original data is self-represented. Since the obtained self-
representation matrix reflects a certain correlation between 
each data and other data, it is called a neighborhood 
relationship matrix; then, each datas self -representation 
vector is used as a new feature, and these new features are 
subjected to second-order self-representation again, also 
known as a reconstruction coefficient matrix; finally, a 
similarity matrix is constructed based on this matrix, and the 
final clustering result is obtained through spectral clustering. 

1 2

2
1 1 11 2 2, , ,

1 2

min

s.t. ( ) 0, ,

FC Z E E
C Z E E

diag C X XC E C CZ E

λ λ∗+ + +

= = + = +

‖ ‖‖ ‖
  (1) 

In the formula, 𝑋𝑋 represents the original data matrix, with 
each column corresponding to one data sample. 𝐶𝐶  is the 
neighborhood relationship matrix; 𝑍𝑍  is the reconstruction 
coefficient matrix; ‖𝐸𝐸1‖1 is used to describe outliers in the 
data; ‖𝐸𝐸2‖𝐹𝐹2   is used to handle Gaussian noise in the 
neighborhood relation matrix; 𝜆𝜆1  and 𝜆𝜆2  are weight 
parameters. In the SSR model: Firstly, each column of the 
neighborhood relationship matrix 𝐶𝐶  represents a certain 
correlation between the corresponding column in the original 
data matrix 𝑋𝑋 and other data, and it is constrained by the 𝑙𝑙1-
norm. Then, 𝐶𝐶 is used as the new feature of the original data 
𝑋𝑋  for self-representation or self-reconstruction, and the 𝐹𝐹 -
norm is used to constrain the reconstruction coefficient matrix 
𝑍𝑍. Finally, calculate the similarity matrix using 𝑍𝑍 and obtain 
the clustering results through spectral clustering. 

2.2. Weighted Block Sparse Subspace 
Clustering Algorithm Based on 
Information Entropy (EBSSC)  

Under the influence of the Gaussian similarity weighted 
sparse subspace algorithm, the information entropy based on 
the correlation coefficient is introduced to determine the 
weight matrix of the sparse constraint. This method can 
impose a greater penalty on the coefficients corresponding to 
two uncorrelated pixels, thereby positively influencing the 
sparse model. Meanwhile, the block diagonal constraint of the 
expression matrix is introduced to enhance the stability of the 
model during the self-expression process. The weighted block 
sparse subspace clustering algorithm (EBSSC[22]) model is 
as follows. 

2
1min

2
s.t. ( ) 0, , 0

F kC

T

W C X XC C

diag C C C C

λ β+ − +

= = ≠

‖ ‖ ‖ ‖ ‖ ‖
     (2) 

In the formula, ‖𝑊𝑊 ⨀𝐶𝐶‖1 represents the 𝑙𝑙1-norm of the 
element-wise multiplication of the two matrices. 𝑊𝑊 
represents the weight matrix, which is determined by 
information entropy, that is, 𝑊𝑊𝑖𝑖𝑖𝑖 = ∑ 𝑝𝑝𝑖𝑖𝑖𝑖,𝑘𝑘 log2 𝑝𝑝𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘 . If 𝑘𝑘 =
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 1 , 𝑝𝑝𝑖𝑖𝑖𝑖,𝑘𝑘  represents the probability that two pixel points 
belong to the same category, and 𝑝𝑝𝑖𝑖𝑖𝑖,𝑘𝑘 is also the correlation 
coefficient between the two pixels. The first term in equation 
(1) is the weighted sparse constraint, whose entropy weight 
represents the penalty term of the l1 norm constraint of the 
corresponding coefficients of the two pixels. The second term 
represents the self-expression of the data, using the 𝐹𝐹-norm 
constraint, aiming to minimize the error between the data set 
and its sparse representation. The third term is the block 
diagonal constraint, aiming to make the coefficient matrix of 
the representation become a block diagonal sparse form. 

3. Entropy-Constrained and Sparse 
Relation-Constrained Subspace 
Clustering 

3.1. Model Building 
Several common subspace clustering models are shown in 

Table 1. Sparse Relationship Representation (SRR) is a 
subspace clustering algorithm with good performance. It 
utilizes the neighborhood relationship between a data sample 
and all samples as a new feature to learn the self-
representation coefficients, and then constructs a similarity 
matrix. The existing SRR model improves clustering 

accuracy by using second-order self-representation, but its 
nuclear norm constraint leads to high computational 
complexity [16], and it does not distinguish the importance of 
different variables.  

In practical data, noise variables or redundant features may 
interfere with the construction of the similarity matrix [7, 22]. 
Therefore, this paper proposes two improvements: (1) 
Introduce the information entropy weighting matrix 𝑊𝑊 , 
quantifying the discriminability between variables through 
the correlation coefficient 𝑝𝑝𝑖𝑖𝑖𝑖,𝑘𝑘. The theoretical basis is that 
information entropy can measure the uncertainty of 
probability distribution, and the lower the entropy value, the 
stronger the correlation, which is suitable as the weight of 
sparse penalty; (2) Replace the nuclear norm constraint with 
the 𝐹𝐹-norm to reconstruct the coefficient matrix 𝑍𝑍, balancing 
computational efficiency and robustness. The theoretical 
basis is that the 𝐹𝐹-norm is more sensitive to Gaussian noise 
and has a closed-form solution [22]. Finally, combine the 
block diagonal constraint (‖𝐶𝐶‖∗) to enhance the sparsity of 
the subspace structure, forming a unified optimization 
framework. The subspace clustering model based on 
information entropy and sparse relationship coupling 
constraints is as follows. 

Table 1. SSC Classic Model and Extended Model 

Model Objective Function Constraint Condition 

SSC/SSC-OMP 2
1|| || || ||

F
C X XCλ+ −  ,diag( ) 0, 1 1TX XC C C= = =  

LSR 2 2|| || || ||
F FXE Zλ+  XX XZ E= +  

GSSC 
21 | | || ||
Fij

i j ij

C X XCλ
ω≠

∑ + −
 

diag( ) 0C =  

KSSC 2
1|| || || Φ( ) Φ( ) ||

F
C Y Y Cλ+ −  diag( ) 0, 1 1TC C= =  

3DF-SSC 
2
2

1 | | || ||ij i i i
i j ij

C x c xλ
ω≠

∑ + −
 

diag( ) 0C =  

𝑇𝑇𝑇𝑇1 
1

|| ||TLC  ,diag( ) 0X XC C= =  

SWSSC 2
1|| || || ||FWC Eλ+  , diag( ) 0X XC E C= + =  

EBSSC 2
1|| || || || || ||F kW C X XC Cλ β+ − +  diag( ) 0, , 0TC C C C= = ≤  

DSLSR 2 2 2
1 2|| || || || || ||

X F Z F F
E E Cλ λ+ +  ,

X Z
X XZ E Z ZC E= + = +  

MSCD-DSC 

 2 2
1

1 1
|| || || ( ) ||

e e F e e F

L L
l l l l l

l l
X X Z Z C Dθ θ θ θλ

= =
∑ − + ∑ − +

 

2
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1
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F

L L
l l

l l
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ω
λ λ
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diag( ) 0lC D+ =  

1 2

2
1 1 1 2 2, , ,

1 2

min || || || || || || || ||

s.t. diag( ) 0, ,

F F FC Z E E
W C Z E E

C X XC E C CZ E

λ λ+ + +

= = + = +



  (3) 

3.2. Model Convergence Analysis and Solution 
The given problem is solved by using the alternating 

direction method of multipliers (ADMM) iterative algorithm. 
An auxiliary transformation variable J is introduced, and the 
original problem is transformed as follows. 

1 2

2
1 1 1 2 2, , , ,

1 2

min || || || || || || || ||

s.t. , ,diag( ) 0,

F F FC Z J E E
W J Z E E

X XC E C J J C CZ E

λ λ+ + +

= + = = = +



 (4) 
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Then the augmented Lagrangian function of the model is: 
2

1 2 1 2 3 1

2
1 1 2 2

21 1
1

1

22 2
2

2

23 3

3

( , , , , , , , ) || || || ||

|| || || ||

2

|| ||
2

|| ||
2

F

F F

F

F

F

C Z J E E Y Y Y W J Z

E E
YX XC E

YC CZ E

YJ C

λ λ
µ

µ
µ

µ
µ

µ

= +

+ +

+ − − +

+ − − +

+ − +



 



(5) 

Among them, 𝑌𝑌1,𝑌𝑌2,𝑌𝑌3 , are Lagrange multipliers, and 
𝜇𝜇1,𝜇𝜇2,𝜇𝜇3  are penalty terms. According to Boyd et al.s 
ADMM convergence theorem, two conditions need to be 
verified: the convexity of the objective function and the block 
convexity of the augmented Lagrangian function. Since in the 
main objective function 𝐿𝐿, |‖𝑊𝑊 ⨀𝐶𝐶‖1 is an 𝑙𝑙1-norm, which 
is a convex function, an ‖𝑍𝑍‖𝐹𝐹 , ‖𝐸𝐸1‖𝐹𝐹  and ‖𝐸𝐸2‖𝐹𝐹2   are 𝐹𝐹 -
norm squares, which are strongly convex functions. Therefore, 
𝐿𝐿 is closed and convex. In the augmented Lagrangian function, 
the variables groups ( 𝐽𝐽,𝐸𝐸1,𝐸𝐸2)  and (𝐶𝐶,𝑍𝑍)  are strictly 
convex when block-wise. Although 𝐶𝐶 =  𝐶𝐶𝐶𝐶  introduces 
nonlinear coupling, the convergence is forced through the 
penalty term 𝜇𝜇2

2
‖𝐶𝐶 − 𝐶𝐶𝐶𝐶 − 𝐸𝐸2‖𝐹𝐹2  . In conclusion, the model 

converges and there exists a feasible solution.  
Because the structure of the augmented Lagrangian 

function 𝐿𝐿  is independent, 𝐶𝐶,𝑍𝑍, 𝐽𝐽,𝐸𝐸1  and 𝐸𝐸2  can be solved 
by fixing other variables. Fixing other variables, the sub-
problem regarding 𝐽𝐽 is: 

1 23 3
1

3

arg min(|| || || || )
2

s.t. diag( ) 0

t t
t t

FtJ

YJ W J C J

J

µ
µ

+ = + − +

=



 (6) 

The solution of 𝐽𝐽  obtained by using the soft threshold 
operator is, 

1

3

3 3

( diag( ))
1SoftThreshold( , )

t

t
t

t t

J W J J
YJ C
µ µ

+ = −

= +









  (7) 

Fixing other variables, the sub-problem concerning 𝐶𝐶 is, 

21 1
1

1

1 22 2
2

2

23 3

3

|| ||
2

arg min || ||
2

|| ||
2

t t
t

Ft

t t
t t t

FtC

t t
t

Ft

YX XC E

YC C CZ E

YJ C

µ
µ

µ
µ

µ
µ

+

 
− − + 

 
 

= + − − + 
 
 
 + − + 
 

    (8) 

This update can be obtained by using the gradient descent 
method to take the partial derivative of 𝐶𝐶𝑡𝑡+1 with respect to 
𝐶𝐶 and setting it to zero. 

1
1 1

1
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2 2
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3
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3
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t
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t

t
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t

t
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t

YX X XC E
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µ
µ

α µ
µ

µ
µ

+


− − − + 



= − + − − − +


− − +  

 (9) 

Here, 𝛼𝛼  represents the learning rate of gradient descent. 
Fixing other variables, the sub-problem regarding 𝑍𝑍 is: 

1 2 22 2
2

2

arg min || || || ||
2

t t
t t t t

F FtZ

YZ Z C C Z Eµ
µ

+  
= + − − + 

 
 (10) 

Taking the derivative of variable 𝑍𝑍 and setting it to 0, the 
closed-form solution of 𝑍𝑍 is, 

1 1 2
2 2 2

2

(1 ) ( )t T T YZ C C C C Eµ µ
µ

+ −= + − +   (11) 

Fixing other variables, the sub-problem regarding 𝐸𝐸1 is, 

1

1 1
1

1 21 1
1

1

|| ||
arg min

|| ||
2

F
t t t

tE
Ft

E
E YX XC E

λ

µ
µ

+

 
 =  + − − + 
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  (12) 

This update can be obtained by solving with a soft 
threshold operator.  

1 1
1

1

( ) max | | ,0t IE sign G G λ
µ

+  
= − 

 
    (13) 

1

1

YG X XC
µ

= − +       (14) 

Fixing other variables, the sub-problem regarding 𝐸𝐸2 is: 

2

2
2 2

1
2 22 2

2
2

|| ||
arg min

|| ||
2

F

F

t t t
t t tE

t

E
E YC C Z E

λ

µ
µ

+

 
 

=  
+ − − + 
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 (15) 

This update can be obtained through a simple closed-form 
solution. 

1 2 2
2

2 2 22

t t
t t t t

t t

YE C C Zµ
λ µ µ

+  
= − + +  

   (16) 

 

Update Lagrange multiplier, 
1 1 1

1 1 1 1( )t t t t tY Y X XC Eµ+ + += + − −   (17) 
1 1 1 1 1

2 2 2 2( )t t t t t t tY Y C C Z Eµ+ + + + += + − −    (18) 
1 1 1 1 1

3 3 3 2( )t t t t t t tY Y C C Z Eµ+ + + + += + − −   (19) 
These steps will be iterated until convergence. In each 

iteration step, some optimization algorithms are used to 
update the variables in the problem separately. This is a basic 
ADMM solution step. The specific optimization algorithms 
and solution steps may vary depending on the specific form 
and characteristics of the problem. 

3.3. Computation Analysis 
The time complexity of the subspace clustering algorithm 

proposed in this paper, which combines information entropy 
and sparse relationship coupling constraints, mainly consists 
of two parts: ADMM iterations and spectral clustering. Let 
the data matrix 𝑋𝑋 ∈ 𝑅𝑅𝑑𝑑×𝑛𝑛 contain 𝑛𝑛 𝑑𝑑-dimensional samples. 
The time complexity analysis of each step of the algorithm is 
as follows. 

During the ADMM iteration stage, in step 2 of variable 
update, (1) the soft-threshold operation of 𝐽𝐽  takes O(𝑛𝑛2) 
time; (2) the closed-form solution of 𝑍𝑍 involves the inversion 
of an 𝑛𝑛 × 𝑛𝑛  matrix, which is implemented using Cholesky 
decomposition and has a complexity of O(𝑛𝑛3) ; (3) the 
gradient update of 𝐶𝐶 includes matrix operations such as 𝑋𝑋𝑇𝑇𝑋𝑋 
and 𝐶𝐶𝑇𝑇𝐶𝐶,  which takes O(𝑚𝑚𝑚𝑚𝑚𝑚(𝑑𝑑 𝑛𝑛2,𝑛𝑛3))  time; (4) the 
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updates of 𝐸𝐸1 and 𝐸𝐸2 are linear operations and only require 
O(𝑛𝑛2). 

The parameter updates in Step 3 and the convergence 
judgment in Step 4 are both of O(𝑛𝑛2) complexity. Therefore, 
the complexity of a single ADMM iteration is 
O(𝑚𝑚𝑚𝑚𝑚𝑚(𝑑𝑑 𝑛𝑛2,𝑛𝑛3)) . When the algorithm converges after 𝑇𝑇 
iterations, the total complexity of the ADMM stage is 
O(𝑇𝑇 ∙ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑑𝑑 𝑛𝑛2,𝑛𝑛3)) . In practical applications, the 
following strategies are adopted to improve efficiency: (1) 

Use truncated SVD to accelerate eigenvalue decomposition; 
(2) Optimize storage by using sparse matrix operations; (3) 
Set a reasonable maximum iteration number Tmax to control 
the ADMM loop. Table 2 details the execution flow of the 
algorithm, where steps 2-4 constitute the main ADMM loop, 
and the convergence and computational efficiency have been 
theoretically guaranteed through the aforementioned 
complexity analysis. The actual performance of the algorithm 
will be verified through experiments in Section 4. 

Table 2. Entropy-Constrained and Sparse Relation-Constrained Subspace Clustering 

Input: Data matrix 𝑋𝑋, number of categories 𝑘𝑘, trade-off parameter 𝛼𝛼, 𝜆𝜆1, 𝜆𝜆2. 

Output: Prediction label. 

Step 1 Initialize 
0 0 0 0 0 0 0 0 0 0 0 0

1 2 1 2 3 max 1 2 3 max, , , , , , , , , , , , , , ,C Z J E E Y Y Y Tµ ρ µ µ µ µ ε   

Step 2 Update 1 2 1 2 3, , , , , , ,J C Z E E Y Y Y   

Step 3 Update 
1 1 1 1

1 2 3 1 2 3 max, , : min( , )t t t t tµ µ µ µ µ µ µ µ ρµ+ + + += = = =   

Step 4 If 1 2max(|| || ,|| || ,|| || )X XC E C J C CZ E∞ ∞ ∞ ε− − − − − <  or  maxt T> : step 5 

       Else: repeat steps 2 to 4.  

Step 5 Calculate the similarity matrix | | | |TG J J= + , and obtain the clustering results using spectral clustering. 

4. Experiment 
This paper compares the performance of the proposed 

EWSSC with K-means, spectral clustering, SSC, LRR, and 
SRR on different datasets through experiments. K-means 
performs well in partitioning spherical clusters, while spectral 
clustering is good at handling graph-structured data. Sparse 
subspace clustering stands out for its adaptability to the 
sparsity of high-dimensional data. The SRR algorithm 
enhances robustness to noise through a second-order self-
representation strategy, thereby more accurately uncovering 
the subspace structure of the data. Through meticulous 
experimental design and evaluation, the aim is to deeply 
understand the performance of these algorithms under 
different data characteristics, providing practical guidance for 
the selection of clustering algorithms, and to indirectly 
observe the effect of the sparse subspace clustering algorithm. 

4.1. Experiment Setup 
To verify the effectiveness of the proposed algorithm, three 

widely used standard datasets were selected for this 
experiment. These datasets cover different application 
scenarios in image processing and have been widely applied 
in unsupervised learning and clustering tasks, making them 
important benchmarks for evaluating new algorithms. Since 
our method is based on an unsupervised learning clustering 
model, the true labels of the samples were not used during the 
training process. The three datasets used in this experiment 
correspond to three types of images: the MNIST handwritten 
digit image dataset, the ORL face image dataset, and the 
COIL20 object dataset. 

The MNIST dataset consists of 10 handwritten digit images 
ranging from 0 to 9. Each digit has approximately 6000 
different handwritten samples. The training set contains 
60,000 images, and the test set contains 10,000 images. Each 

image has a size of 28 × 28  pixels and is a widely used 
benchmark dataset for handwritten digit recognition. Its 
classification performance may be affected in cases where the 
handwriting styles are diverse and the shapes of the digits 
vary significantly, as shown in Figure 1a. 

The ORL dataset consists of 40 facial images of different 
individuals, each with 10 different expressions, resulting in a 
total of 400 images. Each image has a size of 32 × 32 pixels 
and is a relatively challenging facial image dataset. Its 
clustering performance may be affected when there are 
significant posture variations and different lighting conditions, 
as shown in Figure 1b. 

The COIL20 dataset is an image dataset containing 20 
types of objects. Each object has 72 images taken from 
different angles, with the image size being 32 × 32 pixels. 
The image content includes items such as toys and daily 
necessities, as shown in Figure 1c. This dataset is a small 
object image dataset and is suitable for testing clustering 
algorithms for object recognition and classification. 

Overall, choosing these classic and diverse datasets not 
only helps to comprehensively evaluate the improved sparse 
subspace clustering algorithm, but also makes the 
experimental results more interpretable, providing strong 
theoretical support for the practical application of the 
algorithm. Detailed information of the datasets is shown in 
Table 3. If the algorithm is not tested on the datasets, the 
experimental results will be obtained using the 
hyperparameters mentioned in the text. 

In the final evaluation section of the clustering results, the 
following evaluation indicators were selected: Accuracy 
(ACC), which measures the classification accuracy of the 
model for all samples; Normalized Mutual Information 
(NMI), which is used to evaluate the consistency between the 
clustering results and the true labels; Adjusted Rand Index 
(ARI), an adjusted version of the Rand index, which is used 
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to measure the similarity between two data distributions. 
These indicators cover the evaluation of clustering effects 

in various aspects. Among them, ACC is an intuitive measure, 
while NMI and ARI take into account the relative nature of 
the clustering results. The reason for choosing these 
evaluation indicators is that they can comprehensively 
consider the accuracy and consistency of clustering, 
providing a comprehensive assessment of the algorithms 
performance. 

4.2. Algorithm Evaluation 
After conducting systematic tests on three datasets, 

EWSSC significantly outperformed the existing comparison 

methods in all evaluation metrics, further verifying its 
effectiveness and robustness in high-dimensional data 
clustering tasks. To comprehensively evaluate the algorithms 
performance, we conducted multiple experiments on each 
dataset and took the average values of each metric as the final 
results. The optimal parameter configuration is shown in 
Table 4. On the MNIST dataset, this algorithm achieved an 
ACC score of 0.7628, which was 9.48% higher than the SRR 
method; on the ORL dataset, the NMI metric reached 0.9031, 
which was 6.18% higher than SRR; on the COIL20 dataset, 
the ARI metric was 0.7972, which was 1.91% higher than 
SRR. 

 
(a) 

 
(b) 

 
(c) 

Figure 1. Visualization examples of some samples from three datasets 

The experimental results show that the EWSSC algorithm 
not only leads comprehensively in all benchmarks, but also 
demonstrates stronger discrimination ability in high-
dimensional face datasets like ORL, indicating that the 
algorithm can effectively capture data structure information 
and improve clustering consistency. The detailed comparison 

results are shown in Table 4. 
Furthermore, by conducting a grid search on the 

hyperparameters 𝜆𝜆1  and 𝜆𝜆2 , we plotted the classification 
accuracy surface of the ACC metric on the MNIST dataset 
(see Figure 2). It can be observed in the figure that when 𝜆𝜆1 =
  0.05 and 𝜆𝜆2 =  0.01, the ACC reaches a significant peak, 



 

21 

which is in the same high response area as MNIST when the 
optimal parameters 𝛼𝛼 =  0.1 and 𝜌𝜌 =1.053 are used in Table 
5. This indicates the robustness of the parameter selection. 
The smooth variation of the surface also indicates that the 
algorithm is insensitive to parameter changes and has good 
generalization ability. In conclusion, the EWSSC algorithm 
consistently outperforms existing mainstream clustering 

methods on multiple typical datasets. Its superiority stems 
from the joint optimization of data structure and 
representation learning. In the future, the parameter adaptive 
mechanism can be further studied to reduce the parameter 
tuning cost and extend to larger-scale datasets. 

Table 3. Statistical information of the dataset 

Dataset Classes Number of images/class Samples Size 

MNIST 10 7000 70000 28 × 28 

ORL 40 10 400 32 × 32 

COIL20 20 72 1440 32 × 32 

Table 4. Experimental results of evaluation indicators corresponding to each dataset 

Dataset Clustering Algorithm ACC NMI ARI 

MNIST 

Kmeans 0.5902 0.5811 0.4450 

Spectral clustering 0.6301 0.7170 0.4902 

SSC 0.6359 0.5713 0.5858 

LSR 0.5755 0.4812 0.4999 

SRR 0.6680 0.6635 0.6111 

EWSSC 0.7628 0.7218 0.7009 

ORL 

Kmeans 0.6175 0.7843 0.4792 

Spectral clustering 0.7275 0.8586 0.5295 

SSC 0.7750 0.7878 0.6523 

LSR 0.7380 0.7215 0.7123 

SRR 0.7955 0.8413 0.7001 

EWSSC 0.8175 0.9031 0.7272 

COIL20 

Kmeans 0.5708 0.5179 0.5246 

Spectral clustering 0.6203 0.5989 0.6002 

SSC 0.6918 0.5961 0.6223 

LSR 0.6896 0.5588 0.6132 

SRR 0.7956 0.7601 0.7781 

EWSSC 0.8122 0.7831 0.7972 

Table 5. The optimal parameters corresponding to each dataset 

Dataset  𝛼𝛼  𝜆𝜆1  𝜆𝜆1  𝜌𝜌  𝜇𝜇1  𝜇𝜇2  𝜇𝜇3 

MNIST 0.005 0.05 0.01 1.053 0.1 0.1 1.0 

ORL 0.001 0.016 0.011 1.04 0.1 0.1 1.0 

COIL20 0.001 0.02 0.05 1.08 0.1 0.1 1.0 



 

22 

 

Figure 2. The classification accuracy (ACC) surface under fixed parameters (α = 0.005, ρ = 1.053) on the MNIST dataset. 

 

Figure 3. The comparison results of 𝑀𝑀1 and 𝑀𝑀2 on the MNIST, ORL and COIL20 datasets 

4.3. Ablation Experiment 
To verify the effectiveness of the information entropy 

weight in the model proposed in this paper, an ablation 
experiment was conducted for comparison. Two control 
groups were set up: 𝑀𝑀1: the model without weight 𝑊𝑊; 𝑀𝑀2: 
the model with weight. The comparison results on three 
datasets, namely MNIST, ORL, and COIL20, are shown in 
Figure 3. Figure 3 illustrates the impact of the information 
entropy weight module on the model performance. The 
experimental results show that the model with the weight (𝑀𝑀2) 

outperforms the baseline model without weight ( 𝑀𝑀1 ) 
significantly on all three datasets. Specifically: on the MNIST 
dataset, 𝑀𝑀2 s ACC reaches 0.7628, which is 5.52% higher 
than 𝑀𝑀1 , verifying the effective distinction of the weight 
module on the importance of handwritten digit features; on 
the ORL dataset, the performance improvement of 𝑀𝑀2 is the 
most significant, with ACC increasing from 0.6875 to 0.8125 
(a relative increase of 18.18%), indicating that the 
information entropy weight has stronger adaptability to 
illumination and posture changes in face images; on the 
COIL20 dataset: the 7 ACC of 𝑀𝑀2  increases by 15.65%, 
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indicating that the weight mechanism can better capture key 
features in multi-view object recognition tasks. 

These results consistently demonstrate that the information 
entropy weight module significantly enhances the models 
ability to represent complex data structures by quantifying the 
importance of features. It is particularly effective in scenarios 
with noise or significant intra-class differences (such as ORL 
and COIL20). 

5. Conclusion 
The EWSSC proposed in this paper significantly improves 

the clustering performance of high-dimensional data through 
the joint optimization of information entropy weights and 
sparse representation. Theoretical analysis shows that the 
information entropy weights can effectively distinguish the 
importance of features, and the introduction of the 𝐹𝐹-norm 
constraint reduces the computational complexity. The 
experimental part verified the superiority of the algorithm on 
multiple standard datasets: 1) On MNIST and COIL20, the 
algorithm shows stronger robustness for data with large intra-
class differences; 2) The significant improvement on the ORL 
dataset indicates that the algorithm has good adaptability to 
changes in illumination and posture; 3) The ablation 
experiments confirmed that the weight module is a key source 
of performance improvement. Future work will explore the 
influence of different weights and expand the experimental 
datasets. 

References 
[1] Wang W W, Li X P, Feng X C, et al. A survey on sparse 

subspace clustering[J]. IEEE/CAA Journal of Automatica 
Sinica, 2015, 41(8): 1373-1384. 

[2] Ouyang P P. Research on Improved Sparse Subspace 
Clustering Algorithm[D]. Qingdao University, 2015. 

[3] Xue X Q. Research on Low-Rank Subspace Clustering 
Algorithm and Its Application[D]. Southwest University of 
Science and Technology, 2021. 

[4] Dong W H. Research on Sparse Subspace Clustering and Its 
Application[D]. Jiangnan University, 2019. (in Chinese) 

[5] Chen H Z. Research on Subspace Clustering Analysis and 
Application of High-Dimensional Data[D]. Xidian University, 
2019. 

[6] Vidal R. Sparse subspace clustering[C]//2009 IEEE 
Conference on Computer Vision and Pattern Recognition. 
Miami, USA: IEEE, 2009: 2790-2797. 

[7] Elhamifar E, Vidal R. Sparse subspace clustering: Algorithm, 
theory, and applications[J]. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 2013, 35(11): 2765-2781. 

[8] Liu G, Lin Z, Yu Y. Robust subspace segmentation by low-
rank representation[C]//Proceedings of the 27th International 
Conference on Machine Learning. Haifa, Israel: OmniPress, 
2010: 663-670. 

[9] Liu G, Lin Z, Yan S, et al. Robust recovery of subspace 
structures by low-rank representation[J]. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-
184. 

[10] Lu C, Min H, Zhao Z, et al. Robust and efficient subspace 
segmentation via least squares regression[C]//Proceedings of 
the 12th European Conference on Computer Vision. Florence, 
Italy: Springer, 2012: 347-360. 

[11] Patel V M, Vidal R. Kernel sparse subspace 
clustering[C]//2014 IEEE International Conference on Image 
Processing. Paris, France: IEEE, 2014: 2849-2853. 

[12] [12] You C, Robinson D, Vidal R. Scalable sparse subspace 
clustering by orthogonal matching pursuit[C]//2016 IEEE 
Conference on Computer Vision and Pattern Recognition. Las 
Vegas, USA: IEEE, 2016: 3918-3927. 

[13] Li C G, Vidal R. Structured sparse subspace clustering: a 
unified optimization framework[C]//2015 IEEE Conference on 
Computer Vision and Pattern Recognition. Boston, USA: IEEE, 
2015: 277-286. 

[14] Li H Y, Wang H Y. Subspace clustering method based on 
$TL_1$ norm constraint[J]. Journal of Electronics & 
Information Technology, 2017, 39(10): 2428-2436. 

[15] Lu G F, Tang R, Yao L. Dual structure least squares regression 
for subspace clustering[J]. Journal of Nanjing University 
(Natural Science), 2022, 58(6): 1050-1058. 

[16] Wei L, Ji F, Liu H, et al. Subspace clustering via structured 
sparse relation representation[J]. IEEE Transactions on Neural 
Networks and Learning Systems, 2022, 33(9): 4610-4623. 

[17] Hu H Q, Zhang W Q, Xu C. Discriminatively enhanced sparse 
subspace clustering[J]. Computer Engineering and 
Applications, 2023, 49(2): 98-104. 

[18] Liu Z Y, Wang H W, Zhao Q. Self-weighted scaled simplex 
representation for subspace clustering[J]. Journal of Beijing 
University of Aeronautics and Astronautics. 
https://doi.org/10.13700/j.bh.1001-5965.2023.0617  

[19] Li T, Wang W W, Zhai D, et al. Weighted sparse subspace 
clustering for image segmentation[J]. Journal of Systems 
Engineering and Electronics, 2014, 36(3): 580-585. 

[20] Zhang H, Zhai H, Zhang L, et al. Spectral-spatial sparse 
subspace clustering for hyperspectral remote sensing images[J]. 
IEEE Transactions on Geoscience and Remote Sensing, 2016, 
54(6): 3672-3684. 

[21] Li W Z, Deng X Q, Liu F C. Subspace clustering algorithm 
fused three-dimensional spatial spectral features of 
hyperspectral images[J]. Application Research of Computers, 
2019, 36(11): 3496-3498. 

[22] Long Y H, Deng X Q, Wang Z W, et al. Weighted block sparse 
subspace clustering algorithm based on information entropy[J]. 
Journal of Data Acquisition and Processing, 2021, 36(3): 544-
555. 

 

 


	Entropy-Constrained and Sparse Relation-Constrained Subspace Clustering
	1. Introduction
	2. Related Work
	2.1. Subspace clustering via structured sparse relation representation
	2.2. Weighted Block Sparse Subspace Clustering Algorithm Based on Information Entropy (EBSSC)

	3. Entropy-Constrained and Sparse Relation-Constrained Subspace Clustering
	3.1. Model Building
	3.2. Model Convergence Analysis and Solution
	3.3. Computation Analysis

	4. Experiment
	4.1. Experiment Setup
	4.2. Algorithm Evaluation
	4.3. Ablation Experiment

	5. Conclusion
	References

