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Abstract: Millimeter-wave (mmWave) Massive multiple-input multiple-output (Massive MIMO) communication can provide 

high-speed network services for emerging application scenarios due to the abundant spectrum resources in the high-frequency 

band, which has emerged as a key technology for future wireless networks. Beamspace Massive MIMO systems equipped with 

lensed antenna arrays (LAA) have attracted considerable attention from industry and academic since it is an effective solution 

with low power and low cost. However, the beam squint effect causes beamspace channel estimation to be significantly 

complicated in wideband beamspace Massive MIMO systems. To address this problem, we investigate a channel estimator based 

on the vector approximate message passing (VAMP) algorithm to improve the estimation performance. Specifically, the 

wideband beamspace channel estimation is firstly considered as the two-dimensional (2D) image reconstruction problem. 

Subsequently, by the VAMP-based scheme, the 2D natural image is accurately sparse reconstructed from noisy linear 

measurements, which effectively solve the channel estimation problem. Simulation results verify the effectiveness of the 

proposed method and highlight its excellent performance in terms of the channel estimation. 

Keywords: Massive MIMO; MMWave communication; Channel estimation; Beamspace; VAMP. 

 

1. Introduction 

Millimeter-wave (mmWave) communication has garnered 

significant attention in recent years since it can leverage the 

abundant spectral resources of high-frequency bands to 

achieve high-speed data rates [1,2]. With the explosion of 

high-resolution services and high-bandwidth applications, 

technological advancements and novel applications in the 

mmWave communication are poised to significantly 

influence on the evolution of 6G networks [3]. However, 

mmWave signals suffer severe path loss during transmission 

as the carrier frequency increases, which is a critical issue for 

mmWave communications [4]. To address this issue, Massive 

MIMO systems with large antenna arrays have been 

introduced to provide directional beams and achieve 

significant beamforming gain, thereby ensuring sufficient 

power at the receiver [5].However, as the number of radio 

frequency (RF) chains increases, both the hardware cost and 

power consumption are significantly higher for the 

conventional MIMO system, which is unaffordable for a 

dedicated RF chain associated with an antenna in the 

mmWave Massive MIMO system [6]. To achieve cost-

effective communication, beamspace Massive MIMO 

equipped with discrete lens antenna arrays (LAAs) has been 

regarded as a promising solution. It can provide directional 

transmission to mitigate path loss with low interference. 

Furthermore, by selecting a small number of power-focused 

beams, LAAs can efficiently reduce the number of RF chains 

and thus reduce the system power [7,8,9]. However, since the 

number of RF chains is considerably smaller than the number 

of antennas, the complete channel state information cannot be 

directly acquired at the baseband [10,11], which is a 

significant challenge for beamspace Massive MIMO systems. 

To reduce the complexity of the beamspace channel 

estimation, several effective schemes were proposed by 

utilizing the sparsity inherent of the beamspace domain [12-

14]. An estimation scheme based on adaptive support 

detection was introduced for the beamspace channel in the 3D 

mmWave Massive MIMO systems [12]. The image 

reconstruction algorithm was introduced as a novel estimator 

to enhance the accuracy of the estimation at low signal-to-

noise ratios (SNR) [13]. Furthermore, a channel estimation 

scheme based on supported detection (SD) was proposed [14], 

which can provide both reliable performance and lower 

overhead. However, the schemes are designed for narrowband 

systems, whereas practical mmWave MIMO systems operate 

at wideband frequencies to provide high-data rate 

transmission. Therefore, the existing narrowband channel 

estimation schemes are not suitable for wideband mmWave 

communication systems. 

Accordingly, several wideband estimation schemes were 

proposed for beamspace channel estimation [15-19]. A novel 

approach leveraging the simultaneous orthogonal matching 

pursuit (SOMP) algorithm was introduced, where the 

estimation problem was formulated as a multiple 

measurement vectors (MMV) problem based on the common 

support, and effectively addressed by the SOMP algorithm 

[15]. Unfortunately, the assumption of the common support 

has limited effectiveness in wideband mmWave MIMO 

systems, where the delay between antennas on the same 

physical path cannot be ignored due to the large number of 

antennas and high sampling rate [16]. As a result, the 

estimated performance is significantly degraded with the 

common support assumption. To solve this problem, a novel 

algorithm known as successive support detection (SSD) was 

proposed for the wideband beamspace channel estimation 

without assuming common support [17]. In this method, each 

path component of the wideband beamspace channel exhibits 

a unique variable-frequency sparse structure, and all sparse 

path components are successively estimated based on the SSD 

scheme. Furthermore, several wideband estimation schemes 

based on Bayesian algorithm were proposed to improve the 

estimation accuracy and reduce the pilot overhead [18,19]. 

However, the estimation schemes [15-19] cannot provide 

satisfactory estimation performance at the low SNR, 

especially for the high-dimensional beamspace channel. 
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In recent years, as an effective iterative method for sparse 

signal recovery, the approximate message passing (AMP) 

algorithm [20] has been widely employed for various high-

dimensional sparse reconstruction problems with low 

computational overhead. Furthermore, with the development 

of artificial intelligence (AI), more sophisticated AI-based 

AMP schemes have been proposed for wideband channel 

estimation to improve the estimation performance [21,22]. A 

model-driven channel estimation scheme was proposed, 

which utilizes neural networks to unfold the AMP algorithm. 

Compared with the conventional AMP algorithm, the deep 

unfolding-based AMP algorithm can improve the accuracy of 

the estimation and thus achieve better performance [21]. A 

model-driven unsupervised learning network was proposed 

for wideband beamspace channel by image reconstruction to 

improve the estimation performance [22]. Nevertheless, the 

schemes [21,22] may exhibit excellent performance in 

specific channel conditions and environments, whereas they 

may lack sufficient generalization in other channel 

environments. Therefore, it is critical to perform a 

generalization estimation for the wideband beamspace 

channel with satisfactory estimation performance. 
In this paper, the channel estimation for the wideband 

beamspace MIMO system is initially formulated as the 

general 2D image sparse reconstruction problem. Then, we 

propose a vector AMP (VAMP) scheme to perform image 

sparse reconstruction. By the VAMP-based scheme, the 2D 

image is accurately sparse reconstructed from noisy linear 

measurements, thus effectively solving the channel 

estimation problem. The effectiveness of the proposed 

estimation method is verified by the simulation results, as the 

proposed scheme outperforms existing estimation methods. 

2. SYSTEM MODEL 

In this section, the wideband beamspace channel is first 

introduced. Then, considering the beam squint effect, the 

wideband beamspace channel estimation problem is 

formulated. Consider an uplink wideband mmWave Massive 

MIMO-OFDM system operating with time division 

multiplexing (TDD), as illustrated in Figure 1. The base 

station (BS), equipped with RFN  RF chains and
BS

N element 

LAAs, can provide communication for K   single-antenna 

users simultaneously. 

 

Figure 1. The architecture of the wideband mmWave Massive  MIMO-OFDM system equipped with LAAs. 

2.1. Wideband Beamspace Channel Model 

We apply the classical Saleh-Valenzuela multipath channel 

model to describe the mmWave Massive MIMO channel 

model [23]. In the spatial domain, the 
1BSN 

 channel vector 

mh
 between the BS and the specific user at subcarrier 
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2

,

1

( ),l m

L
j fBS

m l l m

l

N
e

L

 −

=

= h α         (1) 
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delay of the l -th path, and the complex gain of the l -th path 

are defined as L  , l   and l  , respectively. Then, ,l m
 

represents the spatial direction at subcarrier m  and can be 

expressed as 

, sin ,m

l m l

f
d

c
 =              (2) 

where c  is the light speed, and 
[ / 2, / 2]l   −

 is the 

physical direction. Furthermore, mf   represents the 

frequency of the subcarrier m   in the wideband mmWave 

Massive  MIMO-OFDM system, and can be expressed as 
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where the sampling rate and the carrier frequency are 

defined as sf   and cf  , respectively. The antenna spacing is 

given by 
/ 2 cd c f=

 . Notably, ,l m
  is frequency-

independent in the narrowband mmWave system, whereas 

,l m
  is frequency-dependent in the wideband mmWave 

system [24]. Furthermore, ,( )l mα
  is the array steering 

vector in term of the spatial direction ,l m
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symmetrical number set centered at the zero. 

By exploiting the LAAs, the wideband mmWave MIMO 

channel in the spatial domain is transformed into the 

beamspace representation. Notably, the LAAs essentially 

fulfil the role of the spatial Fourier transform, and the 

wideband beamspace channel vector mh  can be expressed as 
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The bspF
 contains BSN

 orthogonal array steering vectors 

that are associated with the BSN
  beam directions over the 

whole physical space, and can be presented as 

1 2[ ( ), ( ), , ( )] ,
BS

H

bsp N  =F α α α          (6) 

where 
11
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spatial direction predefined by the LAAs. ,l mb  stands for the 

l -th component at subcarrier m  in the beamspace domain, 

and can be defined as 
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where 
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N x
x

x




  is the Dirichlet function. Due to 

the power-focused property of the ( )x  function, the 

majority power of ,l mb  is concentrated on a limited number 

of directions. Moreover, the number of resolvable paths is 

typically small since there is limited scattering in the 

mmWave communication. Therefore, the wideband 

beamspace channel mh  is a sparse vector. However, different 

from narrowband mmWave systems, the spatial direction 

,l m   in the wideband mmWave systems is frequency-

dependent, which is due to the well-known beam squint [25]. 

Considering the beam squint effect, the assumption of the 

common support for the wideband beamspace channel is no 

longer valid. Although the wideband beamspace channel has 

the sparse structure, existing estimation schemes with the 

common support assumption suffer significant performance 

degradation. 

2.2. Problem Formulation 

If the channel remains unchanged during each symbol 

period in the uplink TDD system, the pilot signals are 

transmitted to the BS for the channel estimation. We employ 

the orthogonal pilot scheme to perform channel estimation for 

each user individually [26]. Without loss of generality, 

considering a given user in the wideband mmWave Massive 

MIMO-OFDM system, we define ,m np   as the pilot 

transmitted in instant n   at the subcarrier m  . The 1RFN   

received pilot signals ,m nr  can be expressed as 

, , , , 1,2, , ,m n n m m n n m np m M= + =r A h A n     (8) 

where nA   and ( )2

, ~ 0,m n Nn I   are defined as the 

RF BSN N  hybrid combining matrix and the 1BSN   noise 

vector with 2   representing the noise power, respectively. 

Considering $N$ instants of the transmitted pilot signals and 

letting , 1m np =  for 1, ,n N=   , the overall received pilot 

signal ,1 ,2 ,, , ,
T

T T T

m m m m N
 =  r r r r at the m -th subcarrier can be 

expressed as 

, 1,2, , ,m m m m M= + =r Ah n      (9) 

where mn   represents the effective noise vector, 

1 2, , ,
T

T T T

N
 =  A A A A   is the hybrid combining matrix of 

size RF BSNN N . The elements of A  are randomly selected 

from the set 
1 1

,
RF RFNN NN
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− + 
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 with equal probability. 

Notably, while the beamspace channel vectors of different 

subcarriers may be different due to beam squint effects, they 

are still correlated with the array response vectors [27]. 

Considering this, the channel estimation can be viewed as the 

2D image sparse reconstruction problem, where several 

sparse reconstruction algorithms are utilized to perform the 

channel estimation. 

3. VAMP-BASED CHANNEL 
ESTIMATION 

In this section, we firstly review the AMP algorithm. Then, 

by leveraging the VAMP-based scheme, 2D natural image is 

accurately sparse reconstructed, which effectively solves the 

beamspace channel estimation problem. 

3.1. AMP Algorithm 

As a powerful iterative method for sparse signal recovery, 

the AMP algorithm has been widely employed for the high-

dimensional sparse channel estimation with low 

computational complexity. In wideband mmWave Massive 

MIMO systems, there is a significant increase in the number 

of antennas compared to traditional MIMO systems. Thus, the 

dimension of the sparse signal in (5) is high. Since the AMP 

algorithm has the fast convergence, and low computational 

complexity, which make it as the efficient estimation scheme 

for high-dimensional channel estimation. The beamspace 

channel estimation scheme based on the AMP algorithm [28] 

is demonstrated in Algorithm 1. 

In Algorithm 1, the key stage of the AMP estimation 

scheme is step 4, where the estimate 
1t+h in the t -th iteration 

is obtained via the shrinkage function st  and can be defined 

as 

 

2
1 st ( ; , ),t t t t  + =h r              (10) 
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where ,t i   stands for the phase of complex-valued 

element ,t ir   and 
2

t   is updated by estimating the noise 

variance. Furthermore, t  is the fixed and predefined 

parameter in the t  -th iteration. While the AMP estimation 

scheme has shown excellent performance in dealing with 

large-scale sparse signal recovery problems, there is still a 

critical issue when it is employed for beamspace channel 

estimation. Since the shrinkage parameter t   usually 

employs the same empirical value in all iterations, it tends to 

requires several experiments to obtain a satisfactory value. In 

addition, the AMP algorithm may fail to converge when the 

sensing matrix is beyond independent identical distributed 

(IID) sub-Gaussian region.  
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3.2. VAMP-based wideband beamspace 

channel estimation 

Vector AMP (VAMP) is a computationally efficient 

iterative algorithm designed to enhance the performance in 

the standard linear regression problem [29]. As an extension 

and enhancement of the AMP, the VAMP algorithm is 

particularly suitable for where the transform matrix does not 

have IID Gaussian entries, or when the matrix is ill-

conditioned. The main insight of the VAMP algorithm is 

derived from the consideration of the singular value 

decomposition (SVD) for the transformation matrix. 

Specifically, consider the economic SVD of 
M NA  

Diag( ) ,T=A U s V                (12) 

where Rs   with rank( ) min( , )R M N= A   and s  

contains the positive singular values of A  . For the 

transformation matrix A , the matrixV  will contain the first 

R  columns of a matrix which is uniformly distributed on the 

group of N N   orthogonal matrices. Note that VAMP 

performs well for any singular value s  and any orthogonal 

matrix U  , as long as the dimensions M  , N   are 

sufficiently large [30]. 

Consider the linear inverse problem of the linear inverse 

problem mh  from noisy linear measurements of (9). VAMP 

provides the same benefits as AMP, but for a wider variety of 

matrices. With the powerful application range and excellent 

recovery performance of the VAMP, the VAMP-based 

wideband beamspace channel estimation scheme is proposed, 

as shown in Algorithm 2. 

The VAMP estimation scheme is described in Algorithm 2, 

and more detailed information about the VAMP algorithm can 

be accessed [29]. 
( , )tg

 is a separable Lipschitz denoising 

function parameterized by t . tf  is the true signal 0h  with 

Gaussian white noise, and can be expressed as 

 
2

0 ( , )t = +f h 0 I            (13) 

( , )t t
 g f
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and 


 is the empirical averaging operation 
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  = d                  (15) 

In line 5, 
2s is the square component of vector s . 

4. SIMULATION RESULTS 

In this section, a typical wideband mmWave Massive 

MIMO-OFDM system is considered, where the BS is 

equipped with 
256BSN =

  LAAs antennas and 
16RFN =

 

RF chains to provide communication with 16K =  users 

simultaneously. The total number of subcarriers is set at 

128M =  . In addition, the system bandwidth and carrier 

frequency are
4sf G=

  and 
28cf G=

 , respectively. The 

spatial channel parameters for each user is defined as follows 

[17]. Finally, we define SNR for the channel estimation as a 

key parameter, which is denoted by the value of 
21/ .The 

performance of channel estimation can be evaluated by the 

normalized mean square error (NMSE), and is given as 
2
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where th is an estimate of the genuine channel vectors th . 

Figure 2 illustrates the NMSE performance comparative 

analysis with different estimation schemes by employing the 

ULA array structure at different SNRs. The comparative 

evaluation reveals that the proposed VAMP-scheme achieves 

low NMSE over the examined SNRs range, thereby eclipsing 

the performance of the three existing schemes. A detailed 

examination of the results shows that the NMSE performance 

of the OMP and AMP algorithms is significantly below the 

optimal level. On the contrary, the proposed approach 

significantly improves the NMSE performance. 

 
Figure 2. The NMSE performance comparison for ULA arrays 

with different estimation schemes 

In addition to evaluating the NMSE performance of ULA, 

we also investigate different channel estimation schemes with 

UPA array structure. Figure 3 provides the comparison of the 

NMSE performance with different schemes based on the 

16 16   UPA array. It can be noticed that the conventional 

OMP algorithm and the AMP algorithm cannot provide 

satisfactory estimation performance. On the contrary, the 

proposed VAMP-scheme still outperforms the other three 

schemes, which further verifies the effectiveness of the 

proposed scheme. 
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Figure 3. The NMSE performance comparison for UPA arrays 

with different estimation schemes 

5. Conclusion 

In this paper, we propose a VAMP-based scheme to solve 

the wideband beamspace channel estimation problem. 

Specifically, the beamspace channel estimation is formulated 

as the 2D image sparse reconstruction problem. Subsequently, 

by utilizing the VAMP-based scheme, the wideband 

beamspace channel estimation problem is effectively 

addressed. Simulation results validate the effectiveness of the 

proposed method and highlight its superior performance 

against other estimation schemes. 
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