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Abstract: Millimeter-wave (mmWave) Massive multiple-input multiple-output (Massive MIMO) communication can provide
high-speed network services for emerging application scenarios due to the abundant spectrum resources in the high-frequency
band, which has emerged as a key technology for future wireless networks. Beamspace Massive MIMO systems equipped with
lensed antenna arrays (LAA) have attracted considerable attention from industry and academic since it is an effective solution
with low power and low cost. However, the beam squint effect causes beamspace channel estimation to be significantly
complicated in wideband beamspace Massive MIMO systems. To address this problem, we investigate a channel estimator based
on the vector approximate message passing (VAMP) algorithm to improve the estimation performance. Specifically, the
wideband beamspace channel estimation is firstly considered as the two-dimensional (2D) image reconstruction problem.
Subsequently, by the VAMP-based scheme, the 2D natural image is accurately sparse reconstructed from noisy linear
measurements, which effectively solve the channel estimation problem. Simulation results verify the effectiveness of the
proposed method and highlight its excellent performance in terms of the channel estimation.
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1. Introduction

Millimeter-wave (mmWave) communication has garnered
significant attention in recent years since it can leverage the
abundant spectral resources of high-frequency bands to
achieve high-speed data rates [1,2]. With the explosion of
high-resolution services and high-bandwidth applications,
technological advancements and novel applications in the
mmWave communication are poised to significantly
influence on the evolution of 6G networks [3]. However,
mmWave signals suffer severe path loss during transmission
as the carrier frequency increases, which is a critical issue for
mmWave communications [4]. To address this issue, Massive
MIMO systems with large antenna arrays have been
introduced to provide directional beams and achieve
significant beamforming gain, thereby ensuring sufficient
power at the receiver [5].However, as the number of radio
frequency (RF) chains increases, both the hardware cost and
power consumption are significantly higher for the
conventional MIMO system, which is unaffordable for a
dedicated RF chain associated with an antenna in the
mmWave Massive MIMO system [6]. To achieve cost-
effective communication, beamspace Massive MIMO
equipped with discrete lens antenna arrays (LAAs) has been
regarded as a promising solution. It can provide directional
transmission to mitigate path loss with low interference.
Furthermore, by selecting a small number of power-focused
beams, LAAs can efficiently reduce the number of RF chains
and thus reduce the system power [7,8,9]. However, since the
number of RF chains is considerably smaller than the number
of antennas, the complete channel state information cannot be
directly acquired at the baseband [10,11], which is a
significant challenge for beamspace Massive MIMO systems.

To reduce the complexity of the beamspace channel
estimation, several effective schemes were proposed by
utilizing the sparsity inherent of the beamspace domain [12-
14]. An estimation scheme based on adaptive support
detection was introduced for the beamspace channel in the 3D
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mmWave Massive MIMO systems [12]. The image
reconstruction algorithm was introduced as a novel estimator
to enhance the accuracy of the estimation at low signal-to-
noise ratios (SNR) [13]. Furthermore, a channel estimation
scheme based on supported detection (SD) was proposed [14],
which can provide both reliable performance and lower
overhead. However, the schemes are designed for narrowband
systems, whereas practical mmWave MIMO systems operate
at wideband frequencies to provide high-data rate
transmission. Therefore, the existing narrowband channel
estimation schemes are not suitable for wideband mmWave
communication systems.

Accordingly, several wideband estimation schemes were
proposed for beamspace channel estimation [15-19]. A novel
approach leveraging the simultaneous orthogonal matching
pursuit (SOMP) algorithm was introduced, where the
estimation problem was formulated as a multiple
measurement vectors (MMYV) problem based on the common
support, and effectively addressed by the SOMP algorithm
[15]. Unfortunately, the assumption of the common support
has limited effectiveness in wideband mmWave MIMO
systems, where the delay between antennas on the same
physical path cannot be ignored due to the large number of
antennas and high sampling rate [16]. As a result, the
estimated performance is significantly degraded with the
common support assumption. To solve this problem, a novel
algorithm known as successive support detection (SSD) was
proposed for the wideband beamspace channel estimation
without assuming common support [17]. In this method, each
path component of the wideband beamspace channel exhibits
a unique variable-frequency sparse structure, and all sparse
path components are successively estimated based on the SSD
scheme. Furthermore, several wideband estimation schemes
based on Bayesian algorithm were proposed to improve the
estimation accuracy and reduce the pilot overhead [18,19].
However, the estimation schemes [15-19] cannot provide
satisfactory estimation performance at the low SNR,
especially for the high-dimensional beamspace channel.



In recent years, as an effective iterative method for sparse
signal recovery, the approximate message passing (AMP)
algorithm [20] has been widely employed for various high-
dimensional sparse reconstruction problems with low
computational overhead. Furthermore, with the development
of artificial intelligence (AI), more sophisticated Al-based
AMP schemes have been proposed for wideband channel
estimation to improve the estimation performance [21,22]. A
model-driven channel estimation scheme was proposed,
which utilizes neural networks to unfold the AMP algorithm.
Compared with the conventional AMP algorithm, the deep
unfolding-based AMP algorithm can improve the accuracy of
the estimation and thus achieve better performance [21]. A
model-driven unsupervised learning network was proposed
for wideband beamspace channel by image reconstruction to
improve the estimation performance [22]. Nevertheless, the
schemes [21,22] may exhibit excellent performance in
specific channel conditions and environments, whereas they
may lack sufficient generalization in other channel
environments. Therefore, it is critical to perform a
generalization estimation for the wideband beamspace
channel with satisfactory estimation performance.

In this paper, the channel estimation for the wideband
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beamspace MIMO system is initially formulated as the
general 2D image sparse reconstruction problem. Then, we
propose a vector AMP (VAMP) scheme to perform image
sparse reconstruction. By the VAMP-based scheme, the 2D
image is accurately sparse reconstructed from noisy linear
measurements, thus effectively solving the channel
estimation problem. The effectiveness of the proposed
estimation method is verified by the simulation results, as the
proposed scheme outperforms existing estimation methods.

2. SYSTEM MODEL

In this section, the wideband beamspace channel is first
introduced. Then, considering the beam squint effect, the
wideband beamspace channel estimation problem is
formulated. Consider an uplink wideband mmWave Massive
MIMO-OFDM  system operating with time division
multiplexing (TDD), as illustrated in Figure 1. The base

station (BS), equipped with Nge RF chains and N element

LAAs, can provide communication for K single-antenna
users simultaneously.
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Figure 1. The architecture of the wideband mmWave Massive MIMO-OFDM system equipped with LAAs.

2.1. Wideband Beamspace Channel Model

We apply the classical Saleh-Valenzuela multipath channel
model to describe the mmWave Massive MIMO channel

model [23]. In the spatial domain, the Ngs x1 channel vector

h, between the BS and the specific user at subcarrier

m(m =12, M) can be expressed as

N S j2rr f
=\ G ), (1)
1=1

where the number of resolvable channel paths, the time
delay of the | _th path, and the complex gain of the | _th path
are defined as L, 7' and g , respectively. Then, i

represents the spatial direction at subcarrier ™ and can be
expressed as

f .
fn=-dsing, )
where C is the light speed, and 4 el-nl2.712] is the
physical direction. Furthermore, o represents the

frequency of the subcarrier M in the wideband mmWave
Massive MIMO-OFDM system, and can be expressed as

fo= 1 +£(m—1——wI _1)
M
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where the sampling rate and the carrier frequency are
fe , respectively. The antenna spacing is

given by d=c/2f, Notably, i is frequency-
independent in the narrowband mmWave system, whereas

B

system [24]. Furthermore, #(#.n) is the array steering

him

defined as f, and

is frequency-dependent in the wideband mmWave

vector in term of the spatial direction . For the typical

Nes -element uniform linear array (ULA), *(¢hm) can be
defined as
1 o,
a(d ) = [e 127 ]iel(n)’ @)
Ngs
.
where 1(n) ={— NBSZ_]',— NBSZ_S,---, Nes _1} is the

symmetrical number set centered at the zero.

By exploiting the LAAs, the wideband mmWave MIMO
channel in the spatial domain is transformed into the
beamspace representation. Notably, the LAAs essentially
fulfil the role of the spatial Fourier transform, and the

wideband beamspace channel vector h,, can be expressed as

(&)

_ Neo & o Npg & i =
h, =Fphy =Fy %;49 1 "”a(fi%,m): %;Qe 1 I'mbl.m'



F . .
The P contains Nes orthogonal array steering vectors

that are associated with the Nes beam directions over the
whole physical space, and can be presented as

Fbsp = [“(%):a(@):“wa(ﬁ;as )]H ) (6)
where ¢, = Nl (n- Nes +1)n 1,2,.,Ng is the

spatial direction predefined by the LAAs. b,'m stands for the

| -th component at subcarrier M in the beamspace domain,
and can be defined as

B = Fuss (A ):[G(ﬂ,m—(/;l)r“,

a SINN27X
sin X

— T
@ - ’
(o= )] .
where ©O(X) = is the Dirichlet function. Due to

O(X) function, the

majority power of B.vm is concentrated on a limited number

the power-focused property of the

of directions. Moreover, the number of resolvable paths is
typically small since there is limited scattering in the
mmWave communication. Therefore, the wideband

beamspace channel h,, is a sparse vector. However, different

from narrowband mmWave systems, the spatial direction
B

dependent, which is due to the well-known beam squint [25].
Considering the beam squint effect, the assumption of the
common support for the wideband beamspace channel is no
longer valid. Although the wideband beamspace channel has
the sparse structure, existing estimation schemes with the
common support assumption suffer significant performance
degradation.

in the wideband mmWave systems is frequency-

2.2. Problem Formulation

If the channel remains unchanged during each symbol
period in the uplink TDD system, the pilot signals are
transmitted to the BS for the channel estimation. We employ
the orthogonal pilot scheme to perform channel estimation for
each user individually [26]. Without loss of generality,
considering a given user in the wideband mmWave Massive

MIMO-OFDM system, we define Py,

transmitted in instant N at the subcarrier M. The Nge x1

as the pilot

received pilot signals I, can be expressed as
Fon = AN Pon + ANy, M=12,M ®)
where A, and N, ~CN (O, ol ) are defined as the

Nge X Ngg hybrid combining matrix and the Ngg X1 noise
vector with o? representing the noise power, respectively.
Considering $N$ instants of the transmitted pilot signals and

letting Pnn,=1for n=1...,N  the overall received pilot

signal T —[ AP AR mN] atthe M-th subcarrier can be
expressed as

r,=Ah,+n, m=12.-M O]

where N, represents the effective noise vector,

N T T T T . . - .
AZ[A1 VA ,---,AN] is the hybrid combining matrix of

size NNge x Ngg . The elements of A are randomly selected

1 1
from the set {— t with equal probability.
{ \l N N RF \’ NN RF }
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Notably, while the beamspace channel vectors of different
subcarriers may be different due to beam squint effects, they
are still correlated with the array response vectors [27].
Considering this, the channel estimation can be viewed as the
2D image sparse reconstruction problem, where several
sparse reconstruction algorithms are utilized to perform the
channel estimation.

3. VAMP-BASED CHANNEL
ESTIMATION

In this section, we firstly review the AMP algorithm. Then,
by leveraging the VAMP-based scheme, 2D natural image is
accurately sparse reconstructed, which effectively solves the
beamspace channel estimation problem.

3.1. AMP Algorithm

As a powerful iterative method for sparse signal recovery,
the AMP algorithm has been widely employed for the high-
dimensional sparse channel estimation with low
computational complexity. In wideband mmWave Massive
MIMO systems, there is a significant increase in the number
of antennas compared to traditional MIMO systems. Thus, the
dimension of the sparse signal in (5) is high. Since the AMP
algorithm has the fast convergence, and low computational
complexity, which make it as the efficient estimation scheme
for high-dimensional channel estimation. The beamspace
channel estimation scheme based on the AMP algorithm [28]
is demonstrated in Algorithm 1.

In Algorithm 1, the key stage of the AMP estimation

scheme is step 4, where the estimate 1, ,in the t-th iteration

is obtained via the shrinkage function 7 and can be defined
as

Algorithm 1: The AMP-based wideband beamspace channel estimation scheme

Input: The received signal vector ¥, the combining matrix A, the number of iterations 7"
Tnitialization: v_; = 0.5y = 0,c = 0,hy = 0
fort=0.1.--- . I'-1do

I wvi=F— Ah +bve , +ovi
N s
v

EEEEN

6.

end for

Output: Sparse signal recovery results: h E, .
HHl =775t(rt;ﬂ1,o't2), (10)
(7 (t400)], =na (|l i 407) =max(fe, |- 4e.0)e™, (11)

where @,; stands for the phase of complex-valued

element I; and o is updated by estimating the noise

A is the fixed and predefined
parameter in the t-th iteration. While the AMP estimation
scheme has shown excellent performance in dealing with
large-scale sparse signal recovery problems, there is still a
critical issue when it is employed for beamspace channel
estimation. Since the shrinkage parameter 4, usually

variance. Furthermore,

employs the same empirical value in all iterations, it tends to
requires several experiments to obtain a satisfactory value. In
addition, the AMP algorithm may fail to converge when the
sensing matrix is beyond independent identical distributed
(IID) sub-Gaussian region.



3.2. VAMP-based wideband beamspace
channel estimation

Vector AMP (VAMP) is a computationally efficient
iterative algorithm designed to enhance the performance in
the standard linear regression problem [29]. As an extension
and enhancement of the AMP, the VAMP algorithm is
particularly suitable for where the transform matrix does not
have IID Gaussian entries, or when the matrix is ill-
conditioned. The main insight of the VAMP algorithm is
derived from the consideration of the singular value
decomposition (SVD) for the transformation matrix.

Specifically, consider the economic SVD of A€ R
A=UDiag(s)V', (12)
where seR® with R=rank(A)<min(M,N) and S
contains the positive singular values of A . For the
transformation matrix A, the matrixVV will contain the first
R columns of a matrix which is uniformly distributed on the
group of NxN orthogonal matrices. Note that VAMP
performs well for any singular value S and any orthogonal
matrix U , as long as the dimensions M , N are
sufficiently large [30].
Consider the linear inverse problem of the linear inverse
problem I’_lm from noisy linear measurements of (9). VAMP

provides the same benefits as AMP, but for a wider variety of
matrices. With the powerful application range and excellent
recovery performance of the VAMP, the VAMP-based
wideband beamspace channel estimation scheme is proposed,
as shown in Algorithm 2.

The VAMP estimation scheme is described in Algorithm 2,
and more detailed information about the VAMP algorithm can

be accessed [29]. 9+ 7) is a separable Lipschitz denoising

function parameterized by 4 fi is the true signal ho  with
Gaussian white noise, and can be expressed as

Algorithm 2: The VAMP-hased wideband heamspace channel estimation scheme
RNNrr

Input: The received pilot signal vector T € the combining matrix A € R¥NwrxNss  denoiser

&(,7:), the noise variance 02, and the number of iterations 7

Initialization: Set hy to 0 and 5y > 0. Compute economy SVD A = UDiag(s)V” with VIV = I,

T fi = fi+ Y VDing(by/(be)) (F- V7

end for

Output: Sparse signal recovery results: h = hy
f. =ho + N (0,671) (13)
(9 (T2 is its divergence at fi Specifically,
9 (f.n) is the diagonal of the Jacobian
1 99(f7)
g(ft'yt):dlag{ﬁ ) (14)
t
and <> is the empirical averaging operation
1 N
(dy==>"d,. (15)
N n=1

2
Inline 5, S is the square component of vector S.

4. SIMULATION RESULTS

In this section, a typical wideband mmWave Massive
MIMO-OFDM system is considered, where the BS is
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Ny = 256 =16

equipped with LAAs antennas and Nee
RF chains to provide communication with K'=16 ygers

simultaneously. The total number of subcarriers is set at

M=128 1, addition, the system bandwidth and carrier

frequency are f, =4G and fo = 28G , respectively. The

spatial channel parameters for each user is defined as follows
[17]. Finally, we define SNR for the channel estimation as a

C

2
key parameter, which is denoted by the value of 116" The
performance of channel estimation can be evaluated by the
normalized mean square error (NMSE), and is given as
T 11— YA
p3l T }
2

i
NMSE = —————,
s{3Jh[ |

where D is an estimate of the genuine channel vectors he.

Figure 2 illustrates the NMSE performance comparative
analysis with different estimation schemes by employing the
ULA array structure at different SNRs. The comparative
evaluation reveals that the proposed VAMP-scheme achieves
low NMSE over the examined SNRs range, thereby eclipsing
the performance of the three existing schemes. A detailed
examination of the results shows that the NMSE performance
of the OMP and AMP algorithms is significantly below the
optimal level. On the contrary, the proposed approach
significantly improves the NMSE performance.

(16)

0y ]
: OMP-ULA
AMP-ULA
VAMP-ULA

NMSE (dB)

Qe

-25

0 2 4 6 8 10 12 14 16 18 20
SNR (dB)

Figure 2. The NMSE performance comparison for ULA arrays
with different estimation schemes
In addition to evaluating the NMSE performance of ULA,
we also investigate different channel estimation schemes with
UPA array structure. Figure 3 provides the comparison of the
NMSE performance with different schemes based on the

16x16 ypa array. It can be noticed that the conventional
OMP algorithm and the AMP algorithm cannot provide
satisfactory estimation performance. On the contrary, the
proposed VAMP-scheme still outperforms the other three
schemes, which further verifies the effectiveness of the
proposed scheme.
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Figure 3. The NMSE performance comparison for UPA arrays

5.

with different estimation schemes

Conclusion

In this paper, we propose a VAMP-based scheme to solve
the wideband beamspace channel estimation problem.
Specifically, the beamspace channel estimation is formulated
as the 2D image sparse reconstruction problem. Subsequently,

by

beamspace channel estimation problem

the wideband
is effectively

utilizing the VAMP-based scheme,

addressed. Simulation results validate the effectiveness of the
proposed method and highlight its superior performance
against other estimation schemes.
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