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Abstract: This paper presents a model-driven design methodology for Reed-Solomon (RS) encoder/decoder systems, 

leveraging Model-Based Design (MBD) as the core framework throughout the entire development lifecycle, from requirements 

specification to verification. By integrating mathematical modeling, algorithmic design, and hardware implementation within a 

unified environment, the proposed approach enables automated code generation for both RS encoder and decoder modules, along 

with corresponding test benches for comprehensive functional verification 
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1. Introduction 

To evaluate the performance of novel communication 

algorithms and architectures, engineers must develop 

conceptual validation prototypes and prepare new designs for 

field trials [1] . Typically, FPGA hardware with embedded 

processors is employed to construct prototypes as integral 

components. These platforms, commonly referred to as 

hardware testing platforms, facilitate rapid prototype 

development and enable the testing of new technologies and 

design iterations. However, developing communication 

prototypes and FPGA-based testing platforms often poses 

challenges for typical engineering teams without external 

support. While engineers possess extensive expertise in signal 

processing and communication algorithm development, they 

often lack experience in hardware implementation. This 

experience gap is further exacerbated by the absence of 

integrated tools and streamlined workflows. Although 

engineers frequently utilize high-level languages such as 

MATLAB, hardware design typically relies on specialized 

tools and HDL (Hardware Description Language), creating a 

disconnect between algorithmic development and hardware 

implementation. 

The traditional manual development process has become 

increasingly inadequate to meet current industry demands. To 

address these challenges, integrating model-based 

development (MBD) with visual design methodologies into 

circuit design is imperative [2]. MBD ensures that the final 

product aligns with system requirements by employing 

models as the central artifact throughout the development 

lifecycle. This approach enables multidisciplinary 

engineering teams to collaborate effectively, fosters seamless 

communication across design stages, facilitates early error 

detection and correction, and automates the generation of 

robust, efficient, and high-quality embedded software code 

and synthesizable HDL. 

This paper demonstrates the efficacy of MBD in 

communication system design by implementing a Reed-

Solomon (RS) encoder/decoder. The paper is structured as 

follows: Section 2 introduces the MBD methodology; Section 

3 reviews the theoretical foundations of RS 

encoding/decoding; Section 4 presents the core contribution 

of this work, wherein the RS encoder/decoder is designed and 

validated using MBD; finally, Section 5 concludes the paper 

with key findings and future directions. 

2. Model-Based Design 

Model-Based Design (MBD) enhances design quality and 

expedites design and verification processes through the use of 

executable specifications. These specifications serve as the 

foundation for hardware-software partitioning, automated 

code generation for both hardware (e.g., HDL) and software 

components, and system-level validation within the context 

of the complete system architecture [3,4] . Central to the 

MBD methodology is the system model, which spans the 

entire development lifecycle—from requirements elicitation 

to design implementation and testing (Fig. 1). By establishing 

floating-point, fixed-point, and system-level models that 

encapsulate comprehensive design requirements, MBD 

enables cross-functional engineering teams to collaborate 

effectively and maintain seamless communication across 

development phases. 

A key advantage of MBD is its enforcement of continuous 

verification and validation (V&V) throughout the design 

process. Leveraging specialized MBD tools, engineers can 

conduct iterative testing at each developmental stage, 

ensuring design correctness and compliance with system 

requirements. This approach minimizes error propagation, 

reduces rework, and facilitates early detection of 

inconsistencies between model specifications and 

implementation artifacts. Through automated code generation 

and integrated V&V frameworks, MBD streamlines the 

transition from conceptual design to production-ready 

hardware and software, thereby accelerating time-to-market 

while maintaining rigorous quality standards. 

Model-Based Design (MBD) facilitates the rapid and cost-

efficient development of dynamic systems, encompassing 

control systems, signal processing algorithms, and 

communication protocols. Central to MBD is the use of 

executable specifications, which are iteratively refined 

throughout the development lifecycle. Following model 

development, comprehensive simulations validate the 

model's correctness against system-level requirements, 

enabling exhaustive testing and verification of all design 

aspects. Fig. 2 illustrates the collaborative MBD workflow, 

which integrates MATLAB/Simulink for system modeling 

with HDL toolchains for hardware implementation. 

The HDL workflow advisor automates FPGA 
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programming for leading platforms (e.g., Xilinx® and 

Altera®), offering granular control over HDL architecture, 

critical path analysis, and hardware resource utilization 

estimation. This toolchain generates both VHDL and Verilog 

test benches, enabling rapid verification of synthesized HDL 

code. HDL cosimulation model is applied for performing 

HDL cosimulation with Simulink and an HDL simulator, such 

as Cadence Incisive or Mentor Graphics ModelSim. FPGA-

in-the-loop (FIL) cosimulation model is applied for verifying 

design with Simulink and an FPGA board. 

 

Fig.1 The Workflow of MBD 

 

Fig. 2 The Workflow of MBD based on XILINX development tools  

3. Reed–Solomon Codes 

Reed–Solomon codes named after Reed and Solomon [5] 

following their publicationin 1960 have been used together 

with hard decision decoding in a wide range ofapplications. 

Reed–Solomon codes are maximum distance separable (MDS) 

codesand have the highest possible minimum Hamming 
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distance. The codes have symbols from with parameters

. They are not binary codes but frequently 

are used with , and so there is a mapping of residue 

classes of a primitive polynomial with binary coefficients [6] 

and each element of  is represented as a binarym-tuple. 

Thus, binary codes with code parameters 

 can be constructed from Reed–

Solomon codes. Reed–Solomon codes can be extended in 

length by up to two symbols and in special cases extended in 

length by up to three symbols. In terms of applications, they 

are probably the most popular family of codes. 

The IEEE 802.16 Broadband Wireless Access standard [6] 

employs a shortened version of the RS

 code generated on GF(256), 

where N is the byte length of the coded codeword, K is the 

byte length of the input information before the encoding, and 

T is the maximum number of bytes that can be corrected. The 

code primitive polynomial is 

          (1) 

The code generator polynomial is 

  (2) 

Where  are are nonzero elements of GF

. 

If the input information is ,  the code word can be 

obtained by using the coding formula of the cyclic code. 

  (3) 

The code word gets the RS code after truncating the bit of 

information and deleting the check bit. In the IEEE 802.16d 

protocol, the supported RS codes include RS (32, 24, 4), RS 

(40, 36, 2), RS (64, 48, 8), RS (80, 72, 4), RS (108, 96, 6), RS 

(120, 108, 6). RS encoder introduces parity symbols, which 

are used by the RS decoder to detect and correct symbol errors. 

The code can correct up to symbol errors in each codeword. 

4. The design RS encoder / decoder by 
MBD 

This section shows how to implement encoder and decoder 

for the IEEE 802.16 standard using the MBD method, which 

includes the encoder and decoder design of RS code. Integer-

Input RS encoder block and integer-Input RS decoder block 

of Simulink library. In Fig. 3, it shows the model diagram of 

the entire design, which includes the source, the RS 

subsystem and destination. The RS subsystem is composed of 

the RS encoder module and the RS decoder module, and the 

structure is shown in Fig. 4. The ErrorGen subsystem adds 

noise to the RS encoded message. 

The Source repeatedly transmits the message followed by 

a guard interval. The model has parameters messagelength, 

for the number of symbols in the message to encode; and 

period, which includes the messagelength and the length of 

the guard interval. The guard interval between messages 

accommodates the latency of the encoder adding parity check 

symbols to the message, and the decoder performing a Chien 

search. In the initFcn callback of the model, the 

messagelength is set to 36 and period is set to 236 (which 

suggest that the guard interval has a length of 200 symbols). 

 

Fig. 3 The block diagram of the whole design model 

 

Fig. 4 The block diagram of the whole design model 

4.1. The design of RS encoder by MBD 

The RS encoder is designed by the Integer-Input RS 

Encoder block, which encode data using a Reed-Solomon 

encoder.The Integer-Input RS Encoder block creates a Reed-

Solomon code with message length K and codeword length 

N. We can specify N and K directly in the block dialog. The 

symbols for the code are integers between 0 and 2M-1, which 
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represent elements of the finite field GF(2M)[7]. The default 

value of M is the smallest integer that is greater than or equal 

to log2(N+1), that is, ceil(log2(N+1)). We can change the 

value of M from the default by specifying the primitive 

polynomial for GF(2M). An (N, K) Reed-Solomon code can 

correct up to floor((N-K)/2) symbol errors (not bit errors) in 

each codeword[8,9]. The configuration parameters of the 

Integer-Input RS Encoder block are shown in Fig. 5, where 

primitive polynomial parameter is determined by (1). 

The following Fig. 6 illustrates possible input and output 

signals to this block when codeword length N is set to 7, 

message length K is set to 5, and the default primitive and 

generator polynomials are used.Suppose M = 3, N = 23-1 = 7, 

and K = 5. Then a message is a vector of length 5 whose 

entries are integers between 0 and 7. A corresponding 

codeword is a vector of length 7 whose entries are integers 

between 0 and 7.  

 

Fig. 5 The parameter configuration of the Integer-Input RS Encoder 

 

Fig. 6 The relationship between the input and output of the RS encoder 

4.2. The design of RS decoder by MBD 

The RS decoder is designed by the Integer-Input RS 

DEcoder block, which decode Reed-Solomon code to recover 

integer vector data. This block uses the Berlekamp-Massey 

decoding algorithm [10]. The Integer-Output RS Decoder 

block recovers a message vector from a Reed-Solomon 

codeword vector. For proper decoding, the parameter values 

in this block must match those in the corresponding Integer-

Input RS Encoder block. If the decoder is processing multiple 

codewords per frame, then the same puncture pattern holds 

for all codewords. 

The block can output shortened codewords when the 

Shortened message length S is specified. In this case, the 

codeword length N and message length K should specify the 

full-length (N, K) code that is shortened to an (N–K+S, S) 

code. The second output is the number of errors detected 

during decoding of the codeword. A -1 indicates that the block 

detected more errors than it could correct using the coding 

scheme. An (N,K) Reed-Solomon code can correct up to 

floor((N-K)/2) symbol errors (not bit errors) in each 

codeword. The configuration parameters of the Integer-Input 

RS DEcoder block are shown in Fig. 7. 

 

Fig. 7 The parameter configuration of the Integer-Input RS 
Decoder 

4.3. The Simulation of RS encoder/decoder by 

MBD 

The Logic Analyzer can be used to view multiple signals in 

one window and viewing signals this way makes it easier to 

observe transitions. The simulation results of Fig. 8 show that, 

in the Logic Analyzer output the inputdata signal represents 

the input of the RS encoder block and this is the 36 byte 

message given in the IEEE 802.16 specification. The encoded 

data shows the output of the RS encoder block. Note that the 

IEEE 802.16 specification performs puncturing of the parity 

bytes and retains only the first four bytes of the 16 bytes. In 
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this demo all 16 bytes of parity are used and the first four 

bytes of parity are 49, 31, 40, and BF, matching the IEEE 

802.16 specification. 

The errdata signal represents the encoded data with noise 

added in the specified noise locations. These noise locations 

are marked with 1s in the inserterr signal.The decoded and 

corrected message out of the RS decoder block is shown by 

the outputdata signal. Note that the RS decoder block 

introduces about 3 period lengths of latency. Observe 

outputdata to see that the errors induced by noise are corrected. 

In the development flow based on MBD, HDL Workflow 

Advisor is a MATLAB tools for supporting the FPGA design , 

which verifies the model , automatically generates HDL code 

and conFig.s FPGA. Using XILINX FPGA development ISE 

as synthesis tool, the HDL code automatically generated of 

RS encoder/decoder is synthesized and implement by 

XILINX FPGA chip. The following simulation result shows 

the ModelSim HDL simulator after running the generated, 

which is shown in Fig. 9. It can be seen from the simulation 

results that it is not only accurate, but also fast and effective. 

 

Fig. 8 The simulation results of the RS encoder/decoder 

 

Fig. 9 The ModelSim simulation results of the RS encoder/decoder 

5. Conclusions 

The design and implementation of the communication 

algorithm is a very complex process, and the hardware 

implementation is very difficult. In order to meet the fast 

hardware implementation of communication algorithms, this 

paper proposed an optimized approach of the RS 

encoder/decoder using MBD workflow. Through the method 

of MBD, the complex communication algorithm can 
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automatically generate HDL code, quickly complete the 

functional validation of FPGA design. The described 

methodology allows accelerating the design process of 

communication systems. Compared with the traditional 

design methods, the MBD method can improve product 

quality and reduce development time. 
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