
Journal of Computing and Electronic Information Management
ISSN: 2413-1660 | Vol. 17, No. 2, 2025

58

Model-driven Reed-solomon encoder and decoder
design

Yang Nie

School of Physics and Electronic Information Engineering, Jining Normal University, Ulanqab 012000, China

Abstract: This paper presents a model-driven design methodology for Reed-Solomon (RS) encoder/decoder systems,

leveraging Model-Based Design (MBD) as the core framework throughout the entire development lifecycle, from requirements

specification to verification. By integrating mathematical modeling, algorithmic design, and hardware implementation within a

unified environment, the proposed approach enables automated code generation for both RS encoder and decoder modules, along

with corresponding test benches for comprehensive functional verification

Keywords: FPGA; Model-driven; Reed-solomon Code; MBD.

1. Introduction

To evaluate the performance of novel communication

algorithms and architectures, engineers must develop

conceptual validation prototypes and prepare new designs for

field trials [1] . Typically, FPGA hardware with embedded

processors is employed to construct prototypes as integral

components. These platforms, commonly referred to as

hardware testing platforms, facilitate rapid prototype

development and enable the testing of new technologies and

design iterations. However, developing communication

prototypes and FPGA-based testing platforms often poses

challenges for typical engineering teams without external

support. While engineers possess extensive expertise in signal

processing and communication algorithm development, they

often lack experience in hardware implementation. This

experience gap is further exacerbated by the absence of

integrated tools and streamlined workflows. Although

engineers frequently utilize high-level languages such as

MATLAB, hardware design typically relies on specialized

tools and HDL (Hardware Description Language), creating a

disconnect between algorithmic development and hardware

implementation.

The traditional manual development process has become

increasingly inadequate to meet current industry demands. To

address these challenges, integrating model-based

development (MBD) with visual design methodologies into

circuit design is imperative [2]. MBD ensures that the final

product aligns with system requirements by employing

models as the central artifact throughout the development

lifecycle. This approach enables multidisciplinary

engineering teams to collaborate effectively, fosters seamless

communication across design stages, facilitates early error

detection and correction, and automates the generation of

robust, efficient, and high-quality embedded software code

and synthesizable HDL.

This paper demonstrates the efficacy of MBD in

communication system design by implementing a Reed-

Solomon (RS) encoder/decoder. The paper is structured as

follows: Section 2 introduces the MBD methodology; Section

3 reviews the theoretical foundations of RS

encoding/decoding; Section 4 presents the core contribution

of this work, wherein the RS encoder/decoder is designed and

validated using MBD; finally, Section 5 concludes the paper

with key findings and future directions.

2. Model-Based Design

Model-Based Design (MBD) enhances design quality and

expedites design and verification processes through the use of

executable specifications. These specifications serve as the

foundation for hardware-software partitioning, automated

code generation for both hardware (e.g., HDL) and software

components, and system-level validation within the context

of the complete system architecture [3,4] . Central to the

MBD methodology is the system model, which spans the

entire development lifecycle—from requirements elicitation

to design implementation and testing (Fig. 1). By establishing

floating-point, fixed-point, and system-level models that

encapsulate comprehensive design requirements, MBD

enables cross-functional engineering teams to collaborate

effectively and maintain seamless communication across

development phases.

A key advantage of MBD is its enforcement of continuous

verification and validation (V&V) throughout the design

process. Leveraging specialized MBD tools, engineers can

conduct iterative testing at each developmental stage,

ensuring design correctness and compliance with system

requirements. This approach minimizes error propagation,

reduces rework, and facilitates early detection of

inconsistencies between model specifications and

implementation artifacts. Through automated code generation

and integrated V&V frameworks, MBD streamlines the

transition from conceptual design to production-ready

hardware and software, thereby accelerating time-to-market

while maintaining rigorous quality standards.

Model-Based Design (MBD) facilitates the rapid and cost-

efficient development of dynamic systems, encompassing

control systems, signal processing algorithms, and

communication protocols. Central to MBD is the use of

executable specifications, which are iteratively refined

throughout the development lifecycle. Following model

development, comprehensive simulations validate the

model's correctness against system-level requirements,

enabling exhaustive testing and verification of all design

aspects. Fig. 2 illustrates the collaborative MBD workflow,

which integrates MATLAB/Simulink for system modeling

with HDL toolchains for hardware implementation.

The HDL workflow advisor automates FPGA

59

programming for leading platforms (e.g., Xilinx® and

Altera®), offering granular control over HDL architecture,

critical path analysis, and hardware resource utilization

estimation. This toolchain generates both VHDL and Verilog

test benches, enabling rapid verification of synthesized HDL

code. HDL cosimulation model is applied for performing

HDL cosimulation with Simulink and an HDL simulator, such

as Cadence Incisive or Mentor Graphics ModelSim. FPGA-

in-the-loop (FIL) cosimulation model is applied for verifying

design with Simulink and an FPGA board.

Fig.1 The Workflow of MBD

Fig. 2 The Workflow of MBD based on XILINX development tools

3. Reed–Solomon Codes

Reed–Solomon codes named after Reed and Solomon [5]

following their publicationin 1960 have been used together

with hard decision decoding in a wide range ofapplications.

Reed–Solomon codes are maximum distance separable (MDS)

codesand have the highest possible minimum Hamming

60

distance. The codes have symbols from with parameters

. They are not binary codes but frequently

are used with , and so there is a mapping of residue

classes of a primitive polynomial with binary coefficients [6]

and each element of is represented as a binarym-tuple.

Thus, binary codes with code parameters

 can be constructed from Reed–

Solomon codes. Reed–Solomon codes can be extended in

length by up to two symbols and in special cases extended in

length by up to three symbols. In terms of applications, they

are probably the most popular family of codes.

The IEEE 802.16 Broadband Wireless Access standard [6]

employs a shortened version of the RS

 code generated on GF(256),

where N is the byte length of the coded codeword, K is the

byte length of the input information before the encoding, and

T is the maximum number of bytes that can be corrected. The

code primitive polynomial is

 (1)

The code generator polynomial is

 (2)

Where are are nonzero elements of GF

.

If the input information is , the code word can be

obtained by using the coding formula of the cyclic code.

 (3)

The code word gets the RS code after truncating the bit of

information and deleting the check bit. In the IEEE 802.16d

protocol, the supported RS codes include RS (32, 24, 4), RS

(40, 36, 2), RS (64, 48, 8), RS (80, 72, 4), RS (108, 96, 6), RS

(120, 108, 6). RS encoder introduces parity symbols, which

are used by the RS decoder to detect and correct symbol errors.

The code can correct up to symbol errors in each codeword.

4. The design RS encoder / decoder by
MBD

This section shows how to implement encoder and decoder

for the IEEE 802.16 standard using the MBD method, which

includes the encoder and decoder design of RS code. Integer-

Input RS encoder block and integer-Input RS decoder block

of Simulink library. In Fig. 3, it shows the model diagram of

the entire design, which includes the source, the RS

subsystem and destination. The RS subsystem is composed of

the RS encoder module and the RS decoder module, and the

structure is shown in Fig. 4. The ErrorGen subsystem adds

noise to the RS encoded message.

The Source repeatedly transmits the message followed by

a guard interval. The model has parameters messagelength,

for the number of symbols in the message to encode; and

period, which includes the messagelength and the length of

the guard interval. The guard interval between messages

accommodates the latency of the encoder adding parity check

symbols to the message, and the decoder performing a Chien

search. In the initFcn callback of the model, the

messagelength is set to 36 and period is set to 236 (which

suggest that the guard interval has a length of 200 symbols).

Fig. 3 The block diagram of the whole design model

Fig. 4 The block diagram of the whole design model

4.1. The design of RS encoder by MBD

The RS encoder is designed by the Integer-Input RS

Encoder block, which encode data using a Reed-Solomon

encoder.The Integer-Input RS Encoder block creates a Reed-

Solomon code with message length K and codeword length

N. We can specify N and K directly in the block dialog. The

symbols for the code are integers between 0 and 2M-1, which

61

represent elements of the finite field GF(2M)[7]. The default

value of M is the smallest integer that is greater than or equal

to log2(N+1), that is, ceil(log2(N+1)). We can change the

value of M from the default by specifying the primitive

polynomial for GF(2M). An (N, K) Reed-Solomon code can

correct up to floor((N-K)/2) symbol errors (not bit errors) in

each codeword[8,9]. The configuration parameters of the

Integer-Input RS Encoder block are shown in Fig. 5, where

primitive polynomial parameter is determined by (1).

The following Fig. 6 illustrates possible input and output

signals to this block when codeword length N is set to 7,

message length K is set to 5, and the default primitive and

generator polynomials are used.Suppose M = 3, N = 23-1 = 7,

and K = 5. Then a message is a vector of length 5 whose

entries are integers between 0 and 7. A corresponding

codeword is a vector of length 7 whose entries are integers

between 0 and 7.

Fig. 5 The parameter configuration of the Integer-Input RS Encoder

Fig. 6 The relationship between the input and output of the RS encoder

4.2. The design of RS decoder by MBD

The RS decoder is designed by the Integer-Input RS

DEcoder block, which decode Reed-Solomon code to recover

integer vector data. This block uses the Berlekamp-Massey

decoding algorithm [10]. The Integer-Output RS Decoder

block recovers a message vector from a Reed-Solomon

codeword vector. For proper decoding, the parameter values

in this block must match those in the corresponding Integer-

Input RS Encoder block. If the decoder is processing multiple

codewords per frame, then the same puncture pattern holds

for all codewords.

The block can output shortened codewords when the

Shortened message length S is specified. In this case, the

codeword length N and message length K should specify the

full-length (N, K) code that is shortened to an (N–K+S, S)

code. The second output is the number of errors detected

during decoding of the codeword. A -1 indicates that the block

detected more errors than it could correct using the coding

scheme. An (N,K) Reed-Solomon code can correct up to

floor((N-K)/2) symbol errors (not bit errors) in each

codeword. The configuration parameters of the Integer-Input

RS DEcoder block are shown in Fig. 7.

Fig. 7 The parameter configuration of the Integer-Input RS
Decoder

4.3. The Simulation of RS encoder/decoder by

MBD

The Logic Analyzer can be used to view multiple signals in

one window and viewing signals this way makes it easier to

observe transitions. The simulation results of Fig. 8 show that,

in the Logic Analyzer output the inputdata signal represents

the input of the RS encoder block and this is the 36 byte

message given in the IEEE 802.16 specification. The encoded

data shows the output of the RS encoder block. Note that the

IEEE 802.16 specification performs puncturing of the parity

bytes and retains only the first four bytes of the 16 bytes. In

62

this demo all 16 bytes of parity are used and the first four

bytes of parity are 49, 31, 40, and BF, matching the IEEE

802.16 specification.

The errdata signal represents the encoded data with noise

added in the specified noise locations. These noise locations

are marked with 1s in the inserterr signal.The decoded and

corrected message out of the RS decoder block is shown by

the outputdata signal. Note that the RS decoder block

introduces about 3 period lengths of latency. Observe

outputdata to see that the errors induced by noise are corrected.

In the development flow based on MBD, HDL Workflow

Advisor is a MATLAB tools for supporting the FPGA design ,

which verifies the model , automatically generates HDL code

and conFig.s FPGA. Using XILINX FPGA development ISE

as synthesis tool, the HDL code automatically generated of

RS encoder/decoder is synthesized and implement by

XILINX FPGA chip. The following simulation result shows

the ModelSim HDL simulator after running the generated,

which is shown in Fig. 9. It can be seen from the simulation

results that it is not only accurate, but also fast and effective.

Fig. 8 The simulation results of the RS encoder/decoder

Fig. 9 The ModelSim simulation results of the RS encoder/decoder

5. Conclusions

The design and implementation of the communication

algorithm is a very complex process, and the hardware

implementation is very difficult. In order to meet the fast

hardware implementation of communication algorithms, this

paper proposed an optimized approach of the RS

encoder/decoder using MBD workflow. Through the method

of MBD, the complex communication algorithm can

63

automatically generate HDL code, quickly complete the

functional validation of FPGA design. The described

methodology allows accelerating the design process of

communication systems. Compared with the traditional

design methods, the MBD method can improve product

quality and reduce development time.

References

[1] Nie Y, Ge H, Jing L. Model-Based Design Methodology for
Digital Up and Down Conversion of Software Defined
Radio[J]. International Journal of Multimedia and Ubiquitous
Engineering, 2016, 11(4): 27-36.

[2] Chatterjee S, Kleijn W B. Auditory Model-Based Design and
Optimization of Feature Vectors for Automatic Speech
Recognition[J]. IEEE Transactions on Audio Speech &
Language Processing, 2011, 19(6):1813-1825.

[3] Wang S, Shin K G. Task construction for model-based design
of embedded control software[J]. IEEE Transactions on
Software Engineering, 2006, 32(4):254-264.

[4] Costabile M F, Fogli D, Mussio P, et al. Visual Interactive
Systems for End-User Development: A Model-Based Design

Methodology[J]. IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, 2007, 37(6):1029-
1046.

[5] Wicker S B, Bhargava V K. Reed-Solomon Codes and Their
Applications[M]. John Wiley & Sons, Inc. 1999.

[6] IEEE 802.16: IEEE Standard for Air Interface for Broadband
Wireless Access Systems(Revision of IEEE Std 802.16-2009).
IEEE-SA. 8 June 2012.

[7] Berlekamp E. Bit-serial Reed - Solomon encoders[J]. IEEE
Transactions on Information Theory, 2003, 28(6):869-874.

[8] Hsu I S, Reed I S, Truong T K, et al. The VLSI Implementation
of a Reed—Solomon Encoder Using Berlekamp's Bit-Serial
Multiplier Algorithm[J]. IEEE Transactions on Computers,
2006, C-33(10):906-911.

[9] Dash A R, Lenka T R. VLSI implementation of Reed-Solomon
encoder algorithm for communication systems[J].
Radioelectronics & Communications Systems, 2013,
56(9):441-447.

[10] Clark, George C. Jr., and J. Bibb Cain, Error-Correction
Coding for Digital Communications, New York, Plenum Press,
1981.

