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Abstract: The SCARA robot, formally known as the Selective Compliance Assembly Robot Arm (SCARA), is characterized 

by its high speed and precise positioning capabilities. These advantages have led to its widespread adoption in applications such 

as assembly, material handling, and grasping. Consequently, SCARA robots contribute significantly to improving production 

efficiency and have attracted substantial research interest within the academic community. Due to its inherent structural 

configuration, the SCARA robot typically features a bulky base and certain link members. This volumetric characteristic poses 

challenges for deployment in workspaces with strict size constraints. To enhance the applicability of SCARA robots in such 

specific scenarios, this study focuses on modeling an optimized structural variant. The model is developed based on the robot's 

architecture: its workspace is analyzed, a schematic diagram and corresponding Denavit-Hartenberg (DH) parameters are 

established, and a kinematic model is constructed within MATLAB along with the associated reference frames. The 

homogeneous transformation method is employed to formulate the SCARA robot's kinematic model. Subsequently, the closed-

form solutions for both the forward and inverse kinematics are derived. This comprehensive kinematic analysis provides a 

foundational reference for research into SCARA robot control methodologies. 
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1. Introduction 

Substation operation and maintenance requirements, 

particularly concerning safety performance, are becoming 

increasingly stringent. Transformers operate continuously 

under persistent electrical loads, where a failure in their 

insulation system can lead to significant economic losses. 

Currently, the primary method for detecting potential 

transformer faults relies on periodic oil sampling – extracting 

and analyzing the insulating liquid within the unit. However, 

this manual sampling approach presents significant 

drawbacks: it is resource-intensive both financially and labor-

wise. Critically, conducting sampling on a transformer 

experiencing an incipient fault or malfunction poses 

substantial safety hazards for personnel involved [1]. 

To enhance personnel safety and facilitate effective 

transformer insulating oil sampling, a SCARA robot is 

employed for automated oil extraction. During operation, the 

robot's end-effector is specifically designed with passive 

compliance, mitigating stringent requirements on the robot's 

motion accuracy and trajectory tracking [2-3]. Furthermore, 

the SCARA (Selective Compliance Assembly Robot Arm) 

configuration offers inherent advantages, including a simple 

mechanical structure, high operational speed, and exceptional 

positioning precision [4]. Consequently, utilizing the SCARA 

robot for oil sampling tasks provides superior cost-

effectiveness compared to deploying a six-degree-of-freedom 

(6-DoF) robotic manipulator. 

The confined workspace inherent to the oil extraction task 

presents a significant constraint. Standard SCARA robots, 

often characterized by relatively large physical dimensions, 

prove unsuitable under these spatial limitations [5-6]. To 

accomplish the work within this specific operating 

environment, a custom-designed SCARA robot with an 

appropriately compact size was developed. Based on the 

kinematic structure of this customized SCARA robot, its 

Denavit-Hartenberg (DH) parameters were formally derived. 

Subsequently, a kinematic model was rigorously constructed 

within the MATLAB environment, enabling detailed 

workspace analysis. Using homogeneous transformation 

matrices, the forward and inverse kinematic equations for this 

structurally optimized SCARA robot were explicitly 

formulated. These derived kinematic models provide a critical 

technical reference for implementing effective motion control 

strategies for SCARA robots with this specific customized 

architecture. 

2. SCARA Robot Structure and 
Modeling 

The structural configuration of the SCARA robot 

investigated in this study is depicted in Fig. 1. comprises three 

revolute joints (J1, J2, J3) and one prismatic joint (J0). The 

designated link lengths are as follows: Shoulder Joint (Link 0) 

length L₀ = 120 mm, Elbow Joint (Link 1) length L₁ = 220 

mm, and Wrist Joint (Link 2) length L₂ = 200 mm. The 

prismatic joint J0 exhibits a translational range of 0–40 mm, 

while the revolute joints operate within the following 

rotational ranges: J1 rotates within [-90°, +90°], J2 within [-

164°, +164°], and J3 provides continuous rotation capability 

with a full [-360°, +360°] range. The rotational angles of all 

robot joints are currently at 0°. The vertical displacement of 

joint J0 is 0. The base coordinate system is positioned flush 

with the top surface of link L0 and centered on the base. The 

coordinate system at joint J1 is located on the top surface of 

link L0 and coincides with the rotational center of joint J1. 

The coordinate system at joint J2 resides on the top surface of 

link L1 and aligns with the rotational center of joint J2. The 

coordinate system at joint J3 is fixed to the top surface of link 

L2 and centered on the rotational axis of joint J3. The end-

effector coordinate system is rigidly affixed to the bottom 

surface of link L2 at the rotational center of joint J3.  
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Figure .1 SCARA Robot Structural Diagram 

Derived from the manipulator kinematics, the standard 

Denavit-Hartenberg (DH) parameters for the robot are 

tabulated in Table 1. 

Table 1. DH Parameters of SCARA Robot 

 a alpha d theta 

L0 120 0  0 

L1 220 0 62 0 

L2 200 0 70 0 

L3 0 0 40 0 

Implementing these DH parameters within the MATLAB 

environment using the conventional DH modeling approach 

[7], while incorporating joint motion constraints, yields the 

simulated kinematic model of the SCARA robot is illustrated 

in the Fig.2 

 

Figure .2 Kinematic Modeling of SCARA Robots 

Computational modeling in MATLAB enables derivation 

of transformation matrices and corresponding manipulator 

poses during subsequent SCARA kinematic analysis, thus 

verifying the correctness of the inverse kinematic equations.  

3. SCARA Robot Workspace Analysis 

Primary methodologies for robotic workspace analysis 

include direct geometric boundary examination, Monte 

Carlo-based random sampling of joint configurations, By 

analyzing the DH parameters of the SCARA robot [8-10]. 

Geometric boundary methods and Monte Carlo sampling 

demonstrate efficacy for low-degree-of-freedom (DOF) 

manipulators, while Jacobian-based boundary surface 

analysis offers enhanced precision at the expense of 

significant computational complexity. Given the intrinsically 

simple kinematic structure of the SCARA robot investigated 

in this study, its workspace can be rapidly characterized 

through geometric boundary construction augmented by 

Monte Carlo simulation. 

The XOY-plane projection of the SCARA robot's 

workspace is illustrated in Fig.3. Joint limit configurations 

occur under two critical conditions: when the elbow joint 

angle (J2) equals -90° with concurrent wrist joint angle (J3) 

at -164°, or when J2 = 90° with J3 = 164°. Workspace 

boundary determination proceeds through three parametric 

analyses: (1) With the wrist joint fixed at ±164°, elbow joint 

rotation traces the internal circular-arc boundary; (2) With the 

wrist joint locked at 0°, elbow joint motion generates 

the major external circular-arc boundary; (3) With the elbow 

joint constrained to ±90°, wrist joint rotation establishes 

the minor external circular-arc boundary. 

In SCARA robot modeling, the links can be approximated 

as rigid links. The achievable workspace of the SCARA 

manipulator within the XY-plane can be initially determined 

based on its link lengths and joint limit constraints. However, 

accounting for the physical link dimensions reveals that the 

maximum rotational range of the elbow joint (J2) is limited to 

120°. Consequently, the effective workspace requires 

calibration to accurately reflect operational boundaries. 

 

Figure .3 Workspace of SCARA Robot 

When the size of each link of the SCARA robot is not 
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considered. Take advantage of the projection on this XOY 

plane, the complete three-dimensional workspace of the 

SCARA robot is generated through translational displacement 

along the vertical axis within the operational range of the 

shoulder joint (J0). 

The workspace was validated using the Monte Carlo 

method through randomized sampling of joint configurations 

within their operational ranges. With a sample size of 

N=60,000, the resulting SCARA robot workspace is 

illustrated in Fig. 4. 

 

 

Figure.4 Workspace Determination via Monte Carlo Method 

Considering the size of the connecting rods of each joint of 

the SCARA robot, when the joints of the SCARA robot are in 

the limit position, the size of the base of the SCARA robot 

will limit the maximum angle of rotation of its joints, and the 

projection of the base of the SCARA robot in the XOY plane 

is shown in Figure 5. 

 

Figure.5 SCARA Robot Base Dimensions 

The actual workspace projection of the SCARA robot onto 

the XOY plane, with the exclusion volume of the base 

structure, is depicted in Fig. 6. 

 

Figure.6 SCARA robot workspace calibration 

4. SCARA Robot Kinematics Analysis 

The predominant methodologies for characterizing end-

effector pose relative to the robot base frame are the 

homogeneous transformation method and screw theory. The 
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homogeneous transformation approach offers computational 

efficiency by representing rigid-body position and orientation 

within a unified 4×4 matrix framework. Conversely, screw 

theory utilizes screw coordinates to describe joint motion, 

providing clear geometric interpretation while exhibiting 

singularity-free properties[11-12]. Given the relatively simple 

kinematic structure of the SCARA robot investigated in this 

study, the homogeneous transformation method was selected 

for pose description. 

4.1. SCARA Robot Forward Kinematics  

Deriving the end-effector pose matrix in Cartesian space 

requires establishing successive homogeneous 

transformations between consecutive coordinate frames, 

where each frame {i} is defined relative to its predecessor {i-

1}; cascading these individual transformations yields the 

composite position and orientation of the terminal frame {4} 

with respect to the base frame {0}. 

The transformation defining frame {i} relative to its 

predecessor frame {i-1} is geometrically interpreted as a 

sequence of elementary operations: rotation about one 

principal axis (x, y, or z) of frame {i-1} followed by 

translation along the coordinate axes of that same frame. 

Kinematic analysis of this SCARA manipulator specifically 

reveals that frame {1} is derived from the base frame {0} 

through a 180° rotation about the x-axis coupled with an 80 

mm translation along the x-axis, constituting the 

homogeneous transformation matrix as follows: 

1

0

0
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Consequently, the subsequent homogeneous 

transformation matrices are derived as follows: 
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Multiplying the derived homogeneous transformation 

matrices for each joint of the SCARA manipulator yields the 

pose transformation matrix of the end-effector frame {4} 

relative to the base frame {0}, expressed as[13]. 

4 1 2 3 4
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1 2 3 1 2 3 1 1 24
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4.2. SCARA Robot Inverse Kinematics 

Given the end-effector transformation matrix T for the 

SCARA robot, inverse kinematics analysis is performed to 

derive the corresponding joint angles. Established approaches 

include numerical and geometric solution methods [14-15]. 

Numerical techniques encompass algorithms such as Particle 

Swarm Optimization [16], Sine Cosine Algorithm [17], and 

Genetic Algorithms [18]. Compared to geometric methods, 

numerical approaches demonstrate superior generality for 

high-degree-of-freedom or kinematically complex 

manipulators, operating without geometric constraints. 

However, they incur higher computational demands and may 

converge to local optima. Given the elementary kinematic 

structure of the SCARA robot in this study, the geometric 

solution method is implemented, enabling efficient derivation 

of all joint angles. 

Given specified rotational angles   ， ，   for the 

shoulder, elbow, and wrist joints respectively, along with 

prismatic joint displacement 0z
,along the z-axis, substitution 

into Equation (4.6) yields the resultant end-effector 

transformation matrix:

 

4
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With all elements of the end-effector transformation matrix 

being known quantities, the inverse transformation matrix for 

the first joint (J1) can be computationally derived as follows: 
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Premultiplying both sides of the end-effector 

transformation matrix by the inverse matrix of the shoulder 

joint yields: 

4 1 1 4 2 3 4
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Let

4

1 pT T=
 . 
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Given that both matrices  

1 1 4

0 0T T−，
  constitute known 

quantities, all elements of matrix pT
 are explicitly 

determined, with the resulting kinematic configuration of the 

robotic manipulator depicted in Fig.7. 

 

Figure .7 Inverse Kinematic Solutions 

Given matrix pT , the following equation is derived: 

( ) ( )
22

x yd p p= + 11 

200cos( ) 220cos( )xP   = + + 12 

200sin( ) 220sin( )yP   = + + 13 

Applying the Law of Cosines yields: 
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2
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Applying the Law of Cosines theorem yields: 
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2

1

arccos(cos( )) arccos( )
2

ld l l

dl
 

+ −
=  =  17 

The Py and Px coordinate values in the current frame are 

obtained from the elements at row 1 column 4 and row 2 

column 4 of matrix pT ,respectively. 

( )tan
Py

Px
 + = 18 

arctan( )
Py

Px
 =  19 

The angular displacement between the end-effector 

orientation and the positive x-axis is denoted as   + + , 

hence the terminal rotation angle is given by 

arccos( (1,4)) ( )T  = − + 20 

The rotational angles for each joint of the SCARA robot are 

given by Eqs. 4.15, 4.19, and 4.20 respectively. 

To validate the correctness of the proposed inverse 

kinematic equations for the SCARA robot, the ikunc function 

in MATLAB is employed to compute joint angles for arbitrary 

end-effector poses. These results are compared against 

solutions derived from the inverse kinematic equations 

presented in this study, thereby verifying the accuracy of the 

derived analytical solutions. 

When establishing a basic coordinate system in MATLAB, 

the basic coordinate system is in the same position as in 

Figure 1, but the z-axis points in the opposite direction, so the 

given transformation matrix is: 

1 0 0 400

0 1 0 120
T

0 0 1 170

0 0 0 1

 
 

−
 =
 − −
 
 

21 

the corresponding joint motion angles are computed in 

MATLAB, with the resulting robot pose at these joint angles 

illustrated in Figure 8. 



 

56 

 

 

Figure .8 Joint Angles and SCARA Manipulator Configuration 

Column 1 corresponds to the displacement of joint J0, 

column 2 to the rotation angle (in radians) of joint J1, column 

3 to the rotation angle of joint J2, and column 4 to the rotation 

angle of joint J3. The previously derived equations were 

algorithmically implemented in MATLAB to compute 

translational and rotational displacements under 

transformation matrix (4.21), yielding two solution sets. The 

resultant SCARA manipulator configurations corresponding 

to these joint solutions are illustrated in Figures 9 and 10. 

 

 

Figure .9 Primary Joint Solution and It’s Kinematic Configuration 

 

 

Figure .10 Secondary Joint Solution and It’s Kinematic 
Configuration 

It is demonstrated that all joint angle solutions derived from 

the proposed inverse kinematics equations yield consistent 

end-effector poses. Furthermore, the primary joint solution 

exhibits only minimal deviation from MATLAB's ikunc 
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solution - specifically a marginal positional discrepancy 

confined to the J0 prismatic joint. These results validate the 

correctness of the analytical inverse kinematics formulation 

presented in this work. 
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