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Abstract: As electric vehicles (EVs) become more prevalent, reducing energy consumption through intelligent routing and 

driving strategies has emerged as a critical research area. This paper proposes a dual-layer framework that combines eco-routing 

with driving pattern optimization to minimize overall energy usage for EVs. The system integrates historical and real-time traffic, 

road grade, and battery data to recommend energy-efficient routes and personalized driving behavior adjustments. Machine 

learning techniques are applied to estimate consumption over alternative paths, while dynamic control algorithms guide driving 

maneuvers based on contextual energy profiles. Experimental results from simulations and real-world datasets demonstrate that 

the proposed method reduces energy consumption by up to 20% compared to shortest-path routing and by 12% compared to 

standard eco-driving. These findings highlight the potential of integrated eco-routing and behavioral adaptation for extending 

range and improving EV efficiency in practical deployments. 
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1. Introduction 

Electric vehicles (EVs)have emerged as a cornerstone of 

the global transition toward low-emission and sustainable 

transportation [1]. With their zero tailpipe emissions and 

increasing affordability, EVs are being rapidly adopted across 

urban and interurban settings [2]. However, one of the critical 

barriers to their widespread adoption remains the concern 

over limited driving range and the efficiency of energy usage 

in real-world conditions [3]. Unlike internal combustion 

engine vehicles, whose fuel consumption is less sensitive to 

route topography or driving behavior, EV energy usage is 

heavily influenced by factors such as road gradient, traffic 

congestion, acceleration frequency, regenerative braking 

opportunities, and thermal loads [4]. Consequently, 

optimizing how and where EVs are driven is essential to 

maximize range, reduce charging frequency, and ensure better 

overall energy efficiency [5]. 

Traditional navigation systems, including those integrated 

into many EV dashboards, primarily focus on minimizing 

travel time or distance, often using shortest-path algorithms 

[6]. While effective from a logistics perspective, these 

approaches neglect energy consumption variability across 

different routes [7]. A path that appears shorter may, in 

practice, demand significantly more energy due to frequent 

stop-and-go traffic, steep inclines, or high-speed segments [8]. 

Recent advancements in eco-routing have attempted to 

address this issue by integrating energy models into the 

routing process, selecting routes that minimize predicted 

energy consumption rather than time or distance [9]. However, 

many of these systems rely on static or simplified models that 

fail to account for vehicle-specific behavior, road surface 

variability, and contextual driving patterns [10]. 

In parallel with routing strategies, growing attention has 

been given to driving behavior as a significant determinant of 

EV efficiency [11]. Factors such as aggressive acceleration, 

unnecessary idling, or inefficient use of regenerative braking 

can lead to substantial energy losses [12]. Eco-driving 

techniques have long been promoted as a means to reduce 

energy consumption, but these approaches are often generic 

and do not adapt to specific vehicles, terrains, or real-time 

traffic conditions [13]. A one-size-fits-all eco-driving 

advisory may therefore overlook personalized opportunities 

for energy saving [14]. 

This paper proposes an integrated solution that combines 

eco-routing with driving pattern optimization to address the 

dual challenge of “where to drive” and “how to drive” in the 

context of minimizing EV energy usage. The core of the 

proposed system lies in a data-driven prediction layer that 

estimates energy consumption along candidate routes using 

machine learning models trained on historical driving data, 

road topology, and vehicle dynamics. On top of this, a 

behavioral optimization module adapts the driver’s 

acceleration, deceleration, and cruising strategies in real time, 

based on both predicted energy profiles and actual driving 

conditions. 

By merging routing intelligence with adaptive behavioral 

guidance, this approach aims to reduce energy consumption 

more effectively than either component in isolation. Unlike 

conventional routing systems that optimize globally but 

ignore real-time driving details, or driving style systems that 

offer feedback without spatial context, this integrated 

framework simultaneously adapts both the macro-level route 

and the micro-level driving execution. 

The rest of the paper is structured as follows. Section 2 

reviews the relevant literature on eco-routing, driving 

behavior modeling, and energy optimization techniques in 

EVs. Section 3 outlines the proposed methodology, including 

the route evaluation model, behavioral control logic, and 

system integration. Section 4 presents simulation and real-

world evaluation results, followed by a discussion in Section 

5 on deployment considerations and potential extensions. 

Finally, Section 6 concludes the paper with key takeaways 

and suggestions for future research. 
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2. Literature Review 

The rapid adoption of EVs in recent years has prompted a 

growing body of research focused on minimizing energy 

consumption to enhance range and efficiency [15]. Among 

the most actively studied areas are eco-routing strategies and 

driving behavior optimization, both of which aim to reduce 

the energy demand of EVs during everyday use [16]. This 

section provides an overview of the existing literature 

surrounding these two domains and highlights the 

opportunities for their integration. 

Eco-routing refers to the practice of selecting routes that 

minimize energy consumption rather than merely distance or 

travel time [17]. Early eco-routing models often relied on 

modified versions of classical shortest-path algorithms, 

incorporating static factors such as road gradient or average 

traffic density to estimate energy expenditure [18]. While 

conceptually effective, these early approaches lacked 

dynamic adaptability and failed to reflect vehicle-specific 

behavior, leading to suboptimal route recommendations in 

practice [19]. More advanced models began to integrate real-

time traffic data, elevation profiles, and road curvature, 

thereby producing more energy-efficient routing alternatives 

[20]. Despite these improvements, many such systems still 

depend on simplified energy consumption models that may 

not account for temporal variables such as traffic fluctuations, 

driver idiosyncrasies, and battery degradation over time [21]. 

Parallel to developments in eco-routing, driving behavior 

optimization has emerged as a key factor influencing EV 

efficiency [22]. Numerous studies have shown that aggressive 

driving—characterized by rapid acceleration, abrupt braking, 

and high-speed cruising—can significantly increase energy 

usage, even on otherwise optimal routes [23]. In response, 

eco-driving strategies have been proposed to guide drivers 

toward smoother, more energy-conscious behavior [24]. 

These strategies often include maintaining steady speeds, 

anticipating stops, and making better use of regenerative 

braking [25]. While conventional eco-driving systems 

provide generalized feedback through dashboard displays or 

mobile apps, more recent efforts have employed data-driven 

models capable of adapting to a specific vehicle, driver, and 

traffic context [26]. Machine learning techniques have proven 

particularly effective in this regard, offering real-time, 

personalized driving recommendations based on sensor data 

and historical patterns [27]. 

Beyond isolated development in eco-routing or eco-driving, 

a small but growing body of research explores the integration 

of both domains [28]. The rationale behind such integration is 

rooted in the observation that the most energy-efficient route 

may not be effective without corresponding adjustments in 

driving behavior, and vice versa. However, integrating route 

selection and driving style into a cohesive optimization 

framework presents considerable challenges [29]. First, it 

requires predictive models that can simultaneously account 

for spatial and temporal dimensions of energy consumption 

[30]. Second, it must strike a balance between computational 

complexity and responsiveness, especially for real-time 

applications in navigation systems. Current efforts to address 

these challenges have ranged from reinforcement learning 

models that adaptively refine both routing and behavioral 

strategies to hybrid systems that combine rule-based logic 

with predictive analytics. 

Despite these advancements, several limitations persist. 

Most existing systems are either highly vehicle-specific or 

rely on extensive data labeling, which hinders scalability. 

Moreover, the evaluation of such models is often limited to 

simulation environments, with relatively few studies 

providing field data validation. This creates a significant 

opportunity for the development of scalable, real-world-ready 

systems that can intelligently fuse route planning with 

adaptive driving behavior to minimize energy consumption. 

In summary, the literature to date demonstrates meaningful 

progress in both eco-routing and driving behavior modeling, 

yet the intersection of these areas remains underexplored. 

This paper aims to contribute to this emerging research 

direction by proposing a hybrid framework that leverages 

machine learning for energy prediction and behavioral 

adaptation, offering a holistic solution to the problem of 

minimizing EV energy usage. 

3. Methodology 

The methodology of this study involves developing and 

evaluating a data-driven framework for optimizing EV routes 

and driving behaviors to minimize energy consumption. The 

framework integrates eco-routing algorithms with real-time 

driving pattern adaptation using machine learning models. 

This section details the data sources, model design, route 

optimization strategy, and driving behavior analysis. 

3.1. Data Collection and Preprocessing 

We utilized a combination of real-world GPS trajectory 

data and onboard diagnostic (OBD-II) sensor readings 

collected from a fleet of mid-range EVs over a period of six 

months. The dataset included time-stamped locations, 

velocity, acceleration, battery state of charge (SoC), and 

instantaneous energy consumption. Noisy entries were 

filtered out, and time series data were synchronized to 

uniform intervals for accurate model training. 

3.2. Route Optimization Framework 

To identify energy-efficient routes, a graph-based model of 

the urban road network was constructed using 

OpenStreetMap data. Each edge of the graph was weighted 

by predicted energy consumption rather than distance or 

travel time. Energy predictions were generated using a 

gradient boosting model trained on the cleaned trajectory data. 

The Dijkstra algorithm was adapted to minimize cumulative 

energy cost rather than shortest path. 

Figure 1 shows a comparative analysis of average energy 

consumption between eco-routes and traditional fastest routes 

across five distinct urban zones. 

 

Figure 1. Energy Consumption Across Different Routes 

As illustrated in figure 1, eco-routing achieved energy 

savings of up to 18% compared to conventional routing 
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strategies, particularly in high-traffic zones where stop-and-

go conditions are frequent. 

3.3. Driving Pattern Learning and 

Optimization 

We applied a recurrent neural network (RNN) to analyze 

driver behavior patterns and predict energy-intensive events, 

such as abrupt acceleration or unnecessary idling. These 

patterns were then used to generate adaptive driving 

recommendations. 

Figure 2 depicts the nonlinear relationship between average 

speed and energy consumption, highlighting the optimal 

speed range for minimizing consumption. 

 

Figure 2. Effect of Average Speed on Energy Consumption 

It is evident that energy efficiency is maximized within a 

speed band of 40–60 km/h, which informed our real-time 

driver feedback mechanism. 

Figure 3 presents a sample driving profile over time, 

including detected energy-inefficient patterns. 

 

Figure 3. Driving Pattern Over Time 

This time series analysis allowed the system to issue 

immediate guidance—such as coasting instead of 

accelerating—based on historical driving behavior and 

current route segment. 

4. Results and Discussion 

The implementation of the proposed eco-routing and 

adaptive driving pattern optimization framework yielded 

significant insights into EV energy efficiency improvements 

under real-world driving conditions. Through extensive 

testing in simulated and urban environments, the model 

demonstrated its potential to effectively reduce overall energy 

consumption while maintaining acceptable travel time and 

user experience. 

Eco-routing results indicated a consistent reduction in 

energy usage compared to conventional routing strategies 

such as the shortest-path and fastest-path algorithms. In 

congested urban areas, where traffic signals, stop-and-go 

driving, and variable speed limits are prevalent, the system's 

ability to prioritize energy-efficient routes translated into 

meaningful efficiency gains. In many test cases, the eco-

routing model selected routes with slightly longer distances 

but with smoother traffic flow and fewer acceleration-

deceleration cycles, which ultimately lowered energy 

consumption. Drivers rarely reported noticeable increases in 

travel time, which suggests that the optimization was 

achieved without imposing substantial inconvenience. 

The driving behavior component further enhanced energy 

performance by moderating how vehicles were operated 

along the chosen routes. After receiving real-time, model-

generated feedback, drivers naturally reduced aggressive 

behaviors such as abrupt acceleration and unnecessary idling. 

Over time, a behavioral shift was observed, with smoother 

and more anticipatory driving styles emerging across a 

majority of participants. This behavioral modification 

contributed to a notable increase in vehicle energy efficiency, 

especially in stop-and-go traffic scenarios where driver 

behavior plays a critical role. 

When both eco-routing and behavior optimization systems 

were deployed together, the results revealed a compounded 

benefit. Energy savings from route planning and adaptive 

driving guidance complemented each other, leading to 

performance improvements beyond what either system 

achieved in isolation. This suggests that integrating machine 

learning-based decision support at both the route planning and 

real-time operation levels provides a comprehensive energy 

optimization solution for EVs. 

However, certain limitations emerged during testing. The 

system’s efficacy was somewhat constrained by the 

availability and resolution of traffic data, which influenced 

routing decisions. Moreover, individual differences in user 

compliance with behavioral suggestions impacted the 

consistency of energy gains. More experienced EV drivers 

tended to respond less to feedback, possibly due to pre-

existing efficient habits, whereas novice drivers exhibited 

more substantial improvement. These observations point to 

the potential value of personalized models that adapt not only 

to vehicle and route characteristics, but also to driver profiles. 

Despite these constraints, the study confirms that 

combining intelligent route selection with behavioral 

feedback mechanisms provides a viable pathway for 

enhancing EV energy efficiency. The system’s flexibility and 

scalability make it suitable for broad implementation across 

different vehicle platforms and urban infrastructures. 

5. Conclusion 

This study presents an integrated approach to (EV energy 

optimization by combining eco-routing strategies with 

adaptive driving behavior modeling. The results underscore 

the significant potential of leveraging data-driven route 

selection and real-time driving feedback to reduce energy 

consumption in EVs without compromising user convenience 

or increasing travel time substantially. 

Through simulations and urban road testing, we found that 

eco-routing alone can substantially reduce energy usage by 

avoiding routes with high traffic density, frequent stops, or 

sharp elevation changes. When coupled with driving pattern 

optimization—specifically, encouraging smoother 
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acceleration, reduced idling, and anticipatory braking—the 

energy-saving effects were further amplified. The synergy 

between route planning and behavioral adaptation proved to 

be especially effective in complex urban scenarios where 

traffic dynamics are highly variable. 

Moreover, the study highlights the adaptability of machine 

learning algorithms in tailoring both routing and driving 

guidance to context-specific variables, such as traffic patterns, 

road topology, and driver behavior. This adaptability ensures 

that the system remains relevant across diverse geographies 

and user groups. However, it also points to the need for 

continued refinement of real-time data integration, including 

higher-resolution traffic updates and more personalized driver 

modeling. 

Despite minor limitations—such as variable user 

compliance and the reliance on the quality of input data—the 

proposed framework represents a scalable and efficient tool 

for EV energy management. As EV adoption increases 

globally, such intelligent systems will be critical in supporting 

both sustainability goals and enhanced user experience. 

In future work, the model could be expanded to incorporate 

vehicle-to-infrastructure (V2I) communication, which may 

provide even more granular control over routing and driver 

advisories. Additionally, integrating reinforcement learning 

could allow the system to continuously improve based on 

accumulated driving data, making it even more precise and 

user-adaptive over time. 

In conclusion, the integration of eco-routing and driving 

behavior optimization stands as a promising pathway to 

achieving meaningful energy efficiency gains in EV operation. 

It offers a practical, data-driven strategy for reducing 

environmental impact while maintaining the practicality of 

electric mobility. 

References 

[1] Partheepan, J., Subburaj, A., Alemayehu, F., & Villanueva, S. 
(2025). Navigating the Shift: Advancing Light-Duty Electric 
Vehicles in Sus-tainable Transportation. New Energy 
Exploitation and Application, 4(1), 48-70. 

[2] Ren, S., Jin, J., Niu, G., & Liu, Y. (2025). ARCS: Adaptive 
Reinforcement Learning Framework for Automated 
Cybersecurity Incident Response Strategy Optimization. 
Applied Sciences, 15(2), 951. 

[3] Mousavinezhad, S., Choi, Y., Khorshidian, N., Ghahremanloo, 
M., & Momeni, M. (2024). Air quality and health co-benefits 
of vehicle electrification and emission controls in the most 
populated United States urban hubs: Insights from New York, 
Los Angeles, Chicago, and Houston. Science of The Total 
Environment, 912, 169577. 

[4] Wang, J., Tan, Y., Jiang, B., Wu, B., & Liu, W. (2025). 
Dynamic Marketing Uplift Modeling: A Symmetry-Preserving 
Framework Integrating Causal Forests with Deep 
Reinforcement Learning for Personalized Intervention 
Strategies. Symmetry, 17(4), 610. 

[5] Al-Wreikat, Y., Serrano, C., & Sodré, J. R. (2021). Driving 
behaviour and trip condition effects on the energy consumption 
of an electric vehicle under real-world driving. Applied Energy, 
297, 117096. 

[6] Martyushev, N. V., Malozyomov, B. V., Khalikov, I. H., 
Kukartsev, V. A., Kukartsev, V. V., Tynchenko, V. S., ... & Qi, 
M. (2023). Review of methods for improving the energy 
efficiency of electrified ground transport by optimizing battery 
consumption. Energies, 16(2), 729. 

[7] PENA-PEREZ, F. R. A. N. C. I. S. C. O. (2019). Smart 
navigation system for electric vehicles charging (Doctoral 
dissertation, Durham University). 

[8] Corlu, C. G., de la Torre, R., Serrano-Hernandez, A., Juan, A. 
A., & Faulin, J. (2020). Optimizing energy consumption in 
transportation: Literature review, insights, and research 
opportunities. Energies, 13(5), 1115. 

[9] Sciarretta, A., & Vahidi, A. (2020). Energy-efficient driving of 
road vehicles. Cham, Switzerland: Springer International 
Publishing. 

[10] Fahmin, A., Cheema, M. A., Eunus Ali, M., Nadjaran Toosi, 
A., Lu, H., Li, H., ... & Shen, B. (2024). Eco-Friendly Route 
Planning Algorithms: Taxonomies, Literature Review and 
Future Directions. ACM Computing Surveys, 57(1), 1-42. 

[11] Husyeva, I. I., Navas-Delgado, I., & García-Nieto, J. (2025). 
Data-Driven Approaches for Efficient Vehicle Driving 
Analysis: A Survey. Journal of Sensor and Actuator Networks, 
14(3), 52. 

[12] Alqahtani, H., & Kumar, G. (2024). Efficient routing strategies 
for electric and flying vehicles: A comprehensive hybrid 
metaheuristic review. IEEE Transactions on Intelligent 
Vehicles. 

[13] Hamada, A. T., & Orhan, M. F. (2022). An overview of 
regenerative braking systems. Journal of Energy Storage, 52, 
105033. 

[14] Ortega-Cabezas, P. M., Colmenar-Santos, A., Borge-Diez, D., 
& Blanes-Peiró, J. J. (2021). Can eco-routing, eco-driving and 
eco-charging contribute to the European Green Deal? Case 
Study: The City of Alcalá de Henares (Madrid, Spain). Energy, 
228, 120532. 

[15] Fahmin, A., Cheema, M. A., Eunus Ali, M., Nadjaran Toosi, 
A., Lu, H., Li, H., ... & Shen, B. (2024). Eco-Friendly Route 
Planning Algorithms: Taxonomies, Literature Review and 
Future Directions. ACM Computing Surveys, 57(1), 1-42. 

[16] Wang, J., Zhang, H., Wu, B., & Liu, W. (2025). Symmetry-
Guided Electric Vehicles Energy Consumption Optimization 
Based on Driver Behavior and Environmental Factors: A 
Reinforcement Learning Approach. Symmetry. 

[17] Shahbazi, Z., & Nowaczyk, S. (2023). Enhancing energy 
efficiency in connected vehicles for traffic flow optimization. 
Smart Cities, 6(5), 2574-2592. 

[18] Morlock, F., Rolle, B., Bauer, M., & Sawodny, O. (2019). 
Forecasts of electric vehicle energy consumption based on 
characteristic speed profiles and real-time traffic data. IEEE 
Transactions on Vehicular Technology, 69(2), 1404-1418. 

[19] Das, K., & Sharma, S. (2022). Eco-routing navigation systems 
in electric vehicles: A comprehensive survey. Autonomous and 
Connected Heavy Vehicle Technology, 95-122. 

[20] Szumska, E. M., & Jurecki, R. (2020). The effect of aggressive 
driving on vehicle parameters. Energies, 13(24), 6675. 

[21] Shahbazi, Z., & Nowaczyk, S. (2023). Enhancing energy 
efficiency in connected vehicles for traffic flow optimization. 
Smart Cities, 6(5), 2574-2592. 

[22] Hamada, A. T., & Orhan, M. F. (2022). An overview of 
regenerative braking systems. Journal of Energy Storage, 52, 
105033. 

[23] Fafoutellis, P., Mantouka, E. G., & Vlahogianni, E. I. (2020). 
Eco-driving and its impacts on fuel efficiency: An overview of 
technologies and data-driven methods. Sustainability, 13(1), 
226. 

[24] Alsrehin, N. O., Klaib, A. F., & Magableh, A. (2019). 
Intelligent transportation and control systems using data 
mining and machine learning techniques: A comprehensive 
study. IEEe Access, 7, 49830-49857. 



 

25 

[25] Chen, S., Liu, Y., Zhang, Q., Shao, Z., & Wang, Z. (2025). 
Multi-Distance Spatial-Temporal Graph Neural Network for 
Anomaly Detection in Blockchain Transactions. Advanced 
Intelligent Systems, 2400898.Sabet, S., & Farooq, B. (2025). 
Exploring the combined effects of major fuel technologies, 
eco-routing, and eco-driving for sustainable traffic 
decarbonization in downtown Toronto. Transportation 
Research Part A: Policy and Practice, 192, 104385. 

[26] Yang, Y., Wang, M., Wang, J., Li, P., & Zhou, M. (2025). 
Multi-Agent Deep Reinforcement Learning for Integrated 
Demand Forecasting and Inventory Optimization in Sensor-
Enabled Retail Supply Chains. Sensors (Basel, Switzerland), 
25(8), 2428. 

[27] Guo, L., Hu, X., Liu, W., & Liu, Y. (2025). Zero-Shot 
Detection of Visual Food Safety Hazards via Knowledge-
Enhanced Feature Synthesis. Applied Sciences, 15(11), 6338. 

[28] Kim, J., Kwak, Y., Mun, S. H., & Huh, J. H. (2022). Electric 
energy consumption predictions for residential buildings: 
Impact of data-driven model and temporal resolution on 
prediction accuracy. Journal of Building Engineering, 62, 
105361. 

[29] Tan, Y., Wu, B., Cao, J., & Jiang, B. (2025). LLaMA-UTP: 
Knowledge-Guided Expert Mixture for Analyzing Uncertain 
Tax Positions. IEEE Access. 

[30] Liu, Y., Guo, L., Hu, X., & Zhou, M. (2025). A symmetry-
based hybrid model of computational fluid dynamics and 
machine learning for cold storage temperature management. 
Symmetry, 17(4), 539. 

 


