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Abstract: As electric vehicles (EVs) become more prevalent, reducing energy consumption through intelligent routing and
driving strategies has emerged as a critical research area. This paper proposes a dual-layer framework that combines eco-routing
with driving pattern optimization to minimize overall energy usage for EVs. The system integrates historical and real-time traffic,
road grade, and battery data to recommend energy-efficient routes and personalized driving behavior adjustments. Machine
learning techniques are applied to estimate consumption over alternative paths, while dynamic control algorithms guide driving
maneuvers based on contextual energy profiles. Experimental results from simulations and real-world datasets demonstrate that
the proposed method reduces energy consumption by up to 20% compared to shortest-path routing and by 12% compared to
standard eco-driving. These findings highlight the potential of integrated eco-routing and behavioral adaptation for extending
range and improving EV efficiency in practical deployments.
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can lead to substantial energy losses [12]. Eco-driving
techniques have long been promoted as a means to reduce

1. Introduction

Electric vehicles (EVs)have emerged as a cornerstone of energy consumption, but these approaches are often generic
the global transition toward low-emission and sustainable and do not adapt to specific vehicles, terrains, or real-time
transportation [1]. With their zero tailpipe emissions and traffic conditions [13]. A one-size-fits-all ~eco-driving
increasing affordability, EVs are being rapidly adopted across advisory may therefore overlook personalized opportunities
urban and interurban settings [2]. However, one of the critical for energy saving [14].
barriers to their widespread adoption remains the concern This paper proposes an integrated solution that combines
over limited driving range and the efficiency of energy usage eco-routing with driving pattern optimization to address the
in real-world conditions [3]. Unlike internal combustion dual challenge of “where to drive” and “how to drive” in the
engine vehicles, whose fuel consumption is less sensitive to context of minimizing EV energy usage. The core of the
route topography or driving behavior, EV energy usage is proposed system lies in a data-driven prediction layer that
heavily influenced by factors such as road gradient, traffic estimates energy consumption along candidate routes using
congestion, acceleration frequency, regenerative braking machine learning models trained on historical driving data,
opportunities, and thermal loads [4]. Consequently, road topology, and vehicle dynamics. On top of this, a
optimizing how and where EVs are driven is essential to behavioral — optimization module adapts the driver’s
maximize range, reduce charging frequency, and ensure better acceleration, deceleration, and cruising strategies in real time,
overall energy efficiency [5]. basec.l on both predicted energy profiles and actual driving

Traditional navigation systems, including those integrated conditions.
into many EV dashboards, primarily focus on minimizing By merging routing intelligence with adaptive behavioral
travel time or distance, often using shortest-path algorithms guidance, this approach aims to reduce energy consumption
[6]. While effective from a logistics perspective, these more effectively than either component in isolation. Unlike
approaches neglect energy consumption variability across conventional routing systems that optimize globally but
different routes [7]. A path that appears shorter may, in ignore real-time driving details, or driving style systems that
practice, demand significantly more energy due to frequent offer feedback without spatial context, this integrated
stop-and-go traffic, steep inclines, or high-speed segments [8]. framework simultaneously adapts both the macro-level route
Recent advancements in eco-routing have attempted to and the micro-level driving execution.
address this issue by integrating energy models into the The rest of the paper is structured as follows. Section 2
routing process, selecting routes that minimize predicted reviews the relevant literature on eco-routing, driving
energy consumption rather than time or distance [9]. However, behavior modeling, and energy optimization techniques in
many of these systems rely on static or simplified models that EVs. Section 3 outlines the proposed methodology, including
fail to account for vehicle-specific behavior, road surface the route evaluation model, behavioral control logic, and
variability, and contextual driving patterns [10]. system integration. Section 4 presents simulation and real-

In parallel with routing strategies, growing attention has world evaluation results, followed by a discussion in Section
been given to driving behavior as a significant determinant of 5 on deployment considerations and potential extensions.
EV efficiency [11]. Factors such as aggressive acceleration, Finally, Section 6 concludes the paper with key takeaways
unnecessary idling, or inefficient use of regenerative braking and suggestions for future research.
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2. Literature Review

The rapid adoption of EVs in recent years has prompted a
growing body of research focused on minimizing energy
consumption to enhance range and efficiency [15]. Among
the most actively studied areas are eco-routing strategies and
driving behavior optimization, both of which aim to reduce
the energy demand of EVs during everyday use [16]. This
section provides an overview of the existing literature
surrounding these two domains and highlights the
opportunities for their integration.

Eco-routing refers to the practice of selecting routes that
minimize energy consumption rather than merely distance or
travel time [17]. Early eco-routing models often relied on
modified versions of classical shortest-path algorithms,
incorporating static factors such as road gradient or average
traffic density to estimate energy expenditure [18]. While
conceptually effective, these early approaches lacked
dynamic adaptability and failed to reflect vehicle-specific
behavior, leading to suboptimal route recommendations in
practice [19]. More advanced models began to integrate real-
time traffic data, elevation profiles, and road curvature,
thereby producing more energy-efficient routing alternatives
[20]. Despite these improvements, many such systems still
depend on simplified energy consumption models that may
not account for temporal variables such as traffic fluctuations,
driver idiosyncrasies, and battery degradation over time [21].

Parallel to developments in eco-routing, driving behavior
optimization has emerged as a key factor influencing EV
efficiency [22]. Numerous studies have shown that aggressive
driving——characterized by rapid acceleration, abrupt braking,
and high-speed cruising—can significantly increase energy
usage, even on otherwise optimal routes [23]. In response,
eco-driving strategies have been proposed to guide drivers
toward smoother, more energy-conscious behavior [24].
These strategies often include maintaining steady speeds,
anticipating stops, and making better use of regenerative
braking [25]. While conventional eco-driving systems
provide generalized feedback through dashboard displays or
mobile apps, more recent efforts have employed data-driven
models capable of adapting to a specific vehicle, driver, and
traffic context [26]. Machine learning techniques have proven
particularly effective in this regard, offering real-time,
personalized driving recommendations based on sensor data
and historical patterns [27].

Beyond isolated development in eco-routing or eco-driving,
a small but growing body of research explores the integration
of both domains [28]. The rationale behind such integration is
rooted in the observation that the most energy-efficient route
may not be effective without corresponding adjustments in
driving behavior, and vice versa. However, integrating route
selection and driving style into a cohesive optimization
framework presents considerable challenges [29]. First, it
requires predictive models that can simultaneously account
for spatial and temporal dimensions of energy consumption
[30]. Second, it must strike a balance between computational
complexity and responsiveness, especially for real-time
applications in navigation systems. Current efforts to address
these challenges have ranged from reinforcement learning
models that adaptively refine both routing and behavioral
strategies to hybrid systems that combine rule-based logic
with predictive analytics.

Despite these advancements, several limitations persist.
Most existing systems are either highly vehicle-specific or
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rely on extensive data labeling, which hinders scalability.
Moreover, the evaluation of such models is often limited to
simulation environments, with relatively few studies
providing field data validation. This creates a significant
opportunity for the development of scalable, real-world-ready
systems that can intelligently fuse route planning with
adaptive driving behavior to minimize energy consumption.

In summary, the literature to date demonstrates meaningful
progress in both eco-routing and driving behavior modeling,
yet the intersection of these areas remains underexplored.
This paper aims to contribute to this emerging research
direction by proposing a hybrid framework that leverages
machine learning for energy prediction and behavioral
adaptation, offering a holistic solution to the problem of
minimizing EV energy usage.

3. Methodology

The methodology of this study involves developing and
evaluating a data-driven framework for optimizing EV routes
and driving behaviors to minimize energy consumption. The
framework integrates eco-routing algorithms with real-time
driving pattern adaptation using machine learning models.
This section details the data sources, model design, route
optimization strategy, and driving behavior analysis.

3.1. Data Collection and Preprocessing

We utilized a combination of real-world GPS trajectory
data and onboard diagnostic (OBD-II) sensor readings
collected from a fleet of mid-range EVs over a period of six
months. The dataset included time-stamped locations,
velocity, acceleration, battery state of charge (SoC), and
instantaneous energy consumption. Noisy entries were
filtered out, and time series data were synchronized to
uniform intervals for accurate model training.

3.2. Route Optimization Framework

To identify energy-efficient routes, a graph-based model of
the wurban road network was constructed using
OpenStreetMap data. Each edge of the graph was weighted
by predicted energy consumption rather than distance or
travel time. Energy predictions were generated using a
gradient boosting model trained on the cleaned trajectory data.
The Dijkstra algorithm was adapted to minimize cumulative
energy cost rather than shortest path.

Figure 1 shows a comparative analysis of average energy
consumption between eco-routes and traditional fastest routes
across five distinct urban zones.
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Figure 1. Energy Consumption Across Different Routes

As illustrated in figure 1, eco-routing achieved energy
savings of up to 18% compared to conventional routing



strategies, particularly in high-traffic zones where stop-and-
go conditions are frequent.

3.3. Driving Pattern Learning and
Optimization

We applied a recurrent neural network (RNN) to analyze
driver behavior patterns and predict energy-intensive events,
such as abrupt acceleration or unnecessary idling. These
patterns were then used to generate adaptive driving
recommendations.

Figure 2 depicts the nonlinear relationship between average
speed and energy consumption, highlighting the optimal
speed range for minimizing consumption.
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Figure 2. Effect of Average Speed on Energy Consumption

It is evident that energy efficiency is maximized within a
speed band of 40—-60 km/h, which informed our real-time
driver feedback mechanism.

Figure 3 presents a sample driving profile over time,
including detected energy-inefficient patterns.
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Figure 3. Driving Pattern Over Time

This time series analysis allowed the system to issue
immediate guidance—such as coasting instead of
accelerating—based on historical driving behavior and
current route segment.

4. Results and Discussion

The implementation of the proposed eco-routing and
adaptive driving pattern optimization framework yielded
significant insights into EV energy efficiency improvements
under real-world driving conditions. Through extensive
testing in simulated and urban environments, the model
demonstrated its potential to effectively reduce overall energy
consumption while maintaining acceptable travel time and
user experience.
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Eco-routing results indicated a consistent reduction in
energy usage compared to conventional routing strategies
such as the shortest-path and fastest-path algorithms. In
congested urban areas, where traffic signals, stop-and-go
driving, and variable speed limits are prevalent, the system's
ability to prioritize energy-efficient routes translated into
meaningful efficiency gains. In many test cases, the eco-
routing model selected routes with slightly longer distances
but with smoother traffic flow and fewer acceleration-
deceleration cycles, which ultimately lowered energy
consumption. Drivers rarely reported noticeable increases in
travel time, which suggests that the optimization was
achieved without imposing substantial inconvenience.

The driving behavior component further enhanced energy
performance by moderating how vehicles were operated
along the chosen routes. After receiving real-time, model-
generated feedback, drivers naturally reduced aggressive
behaviors such as abrupt acceleration and unnecessary idling.
Over time, a behavioral shift was observed, with smoother
and more anticipatory driving styles emerging across a
majority of participants. This behavioral modification
contributed to a notable increase in vehicle energy efficiency,
especially in stop-and-go traffic scenarios where driver
behavior plays a critical role.

When both eco-routing and behavior optimization systems
were deployed together, the results revealed a compounded
benefit. Energy savings from route planning and adaptive
driving guidance complemented each other, leading to
performance improvements beyond what either system
achieved in isolation. This suggests that integrating machine
learning-based decision support at both the route planning and
real-time operation levels provides a comprehensive energy
optimization solution for EVs.

However, certain limitations emerged during testing. The
system’s efficacy was somewhat constrained by the
availability and resolution of traffic data, which influenced
routing decisions. Moreover, individual differences in user
compliance with behavioral suggestions impacted the
consistency of energy gains. More experienced EV drivers
tended to respond less to feedback, possibly due to pre-
existing efficient habits, whereas novice drivers exhibited
more substantial improvement. These observations point to
the potential value of personalized models that adapt not only
to vehicle and route characteristics, but also to driver profiles.

Despite these constraints, the study confirms that
combining intelligent route selection with behavioral
feedback mechanisms provides a viable pathway for
enhancing EV energy efficiency. The system’s flexibility and
scalability make it suitable for broad implementation across
different vehicle platforms and urban infrastructures.

5. Conclusion

This study presents an integrated approach to (EV energy
optimization by combining eco-routing strategies with
adaptive driving behavior modeling. The results underscore
the significant potential of leveraging data-driven route
selection and real-time driving feedback to reduce energy
consumption in EVs without compromising user convenience
or increasing travel time substantially.

Through simulations and urban road testing, we found that
eco-routing alone can substantially reduce energy usage by
avoiding routes with high traffic density, frequent stops, or
sharp elevation changes. When coupled with driving pattern
optimization—specifically, encouraging smoother



acceleration, reduced idling, and anticipatory braking—the
energy-saving effects were further amplified. The synergy
between route planning and behavioral adaptation proved to
be especially effective in complex urban scenarios where
traffic dynamics are highly variable.

Moreover, the study highlights the adaptability of machine
learning algorithms in tailoring both routing and driving
guidance to context-specific variables, such as traffic patterns,
road topology, and driver behavior. This adaptability ensures
that the system remains relevant across diverse geographies
and user groups. However, it also points to the need for
continued refinement of real-time data integration, including
higher-resolution traffic updates and more personalized driver
modeling.

Despite minor limitations—such as variable user
compliance and the reliance on the quality of input data—the
proposed framework represents a scalable and efficient tool
for EV energy management. As EV adoption increases
globally, such intelligent systems will be critical in supporting
both sustainability goals and enhanced user experience.

In future work, the model could be expanded to incorporate
vehicle-to-infrastructure (V2I) communication, which may
provide even more granular control over routing and driver
advisories. Additionally, integrating reinforcement learning
could allow the system to continuously improve based on
accumulated driving data, making it even more precise and
user-adaptive over time.

In conclusion, the integration of eco-routing and driving
behavior optimization stands as a promising pathway to
achieving meaningful energy efficiency gains in EV operation.
It offers a practical, data-driven strategy for reducing
environmental impact while maintaining the practicality of
electric mobility.
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